

JLP:

 A LINEAR PROGRAMMING PACKAGE

FOR MANAGEMENT PLANNING

Juha Lappi

Metsäntutkimuslaitoksen tiedonantoja 414

The Finnish Forest Research Institute. Research Papers 414

JLP: A LINEAR PROGRAMMING PACKAGE

FOR MANAGEMENT PLANNING

Juha Lappi
The Finnish Forest Research Institute
Department of Forest Resources
Suonenjoki Research Station

Metsäntutkimuslaitoksen tiedonantoja 414
The Finnish Forest Research Institute. Research Papers 414

Suonenjoki 1992

Lappi, J. 1992. JLP: A linear programming package for management planning.
Metsäntutkimuslaitoksen tiedonantoja 414. The Finnish Forest Research Institute.
Research Papers 414. 134 p. ISBN 951-40-1218-6, ISSN 0358-4283.

JLP is a linear programming software package designed for management planning
systems that generate several treatment schedules for management units and select
optimal schedule combinations with linear programming. Constraints can be specified
to domains, i.e., subsets of management units. The optimization algorithm is based on
the generalized upper bound technique. The optimization algorithm can be accessed
through a flexible command interface that includes data transformations. The program
is written in portable FORTRAN 77, and it is currently running in Macintosh, VMS,
UNIX, and OS/2 environments. User defined data input, transformations, report writer
and interface routines can be linked to the program. The report includes i) a user's
guide for the built-in interface, ii) a guide for installing the program into user's system,
and iii) description of the mathematical basis of the optimization algorithm.

Keywords: linear programming, management planning

Author's address: Finnish Forest Research Institute, Suonenjoki Research Station, SF-
77600 Suonenjoki, Finland.

Publisher: The Finnish Forest Research Institute; Project 3002-5. Accepted for
publication by Prof. Erkki Tomppo in June 5, 1992.

Distributor: Suonenjoki Research Station, SF-77600 Suonenjoki, Finland.

ISBN 951-40-1218-6
ISSN 0358-4283

Suonenjoen kirjapaino Ky
Suonenjoki 1992

 Contents

Preface ..7

1. INTRODUCTION...8

1.1 General ...8
1.2 Optimization Problem..9
1.3 Purpose of the Report...12

2. USER'S GUIDE..13

2.1 Overview..13
2.2 Command Syntax..14
2.3 Examples ..15

2.3.1 A problem with x-variables: nondecreasing incomes.............15
2.3.2 A problem with x- and z-variables: goal programming.........18
2.3.3 A problem with z-variables: an ordinary LP problem20
2.3.4 A problem with several data files and domains......................21

2.4 General Operating Commands...24
2.4.1 Batch mode..24
2.4.2 Include ...24
2.4.3 List ..25
2.4.4 Help..25
2.4.5 Output..26

Output file (outfile) ...26
Level of output (printlevel, outlevel)26

2.4.6 Time ...27
2.4.7 Pause ..27

2.5 Data Management...27
2.5.1 Summary of data manipulation ...28

Initilization commands...28
Reading data ..28
Modification commands...29
Transforming data...30

2.5.2 Data variables ...30
Constants ..32
D-variables ...32
C-variables..33
X-variables..34
Selecting the type of a data variable.......................................35

2.5.3 Transformations ...35
Arithmetic operations...36
Supported FORTRAN intrinsic functions37
Additional functions ...37
Own functions..37
Logical operators...37
Constant �...37
If ... then structures...38
Loops ..38

2.5.4 Saving data in JLP format ...39
2.6 Problem Definition ...41

2.6.1 Domains...41
2.6.2 Constraints ..41

RHS Range ...42
2.6.3 Objective ...42
2.6.4 Using different domains on the same row43

2.7 Solution...43
2.7.1 Selecting the problem to be solved..43
2.7.2 Printing options..44

Printing rows and x-variables ...44
Reprinting the last solution with other options...................45
Printing weights and shadow prices of schedules45

2.7.3 Marginal analysis of the solution...47
Shadow price of a utility constraint47
Shadow price of an x-variable ..48
Cost of decrease or increase of an x-variable50
Reduced cost of a nonbasic z-variable51
Shadow price of a treatment unit..51
Shadow price of a treatment schedule52

2.7.4 Input parameters of the optimization52
invert ...53
wmin ...53
tole ...53

2.7.5 Output parameters of the optimization....................................54

3. REFERENCE MANUAL (FILE jlp.hlp) ..55

*batch *buff *buflevel *cdata *cform *command line *constants *ctran
*cvar *dir *do *domain *dtran *duplicate *end *end do (enddo) *domain
*feasible *files *help *helpfile *include *init *integer approximation
*keepc *keepx *list *make *mela *mrep *outfile *outlevel *ownread
*own1 *own2 *parin *parout *path *pause *printlevel *problem *read
*recall *reject *report *save *saveform *schedules *show *solve *split
*system *time *title *transformations *unsave *values *variables *write
*xdata *xform *xtran *xvar

4. SETTING UP THE WORKING ENVIRONMENT...74

4.1 Building JLP...74
4.1.1 Compiling and linking JLP (file readme.jlp)74
4.1.2 Parameter file jlp.par ...76
4.1.3 Features of standard FORTRAN not used81

4.2 Output Files in non-VMS Environment ..81
4.3 Sending a Command to the System Level...81
4.4 Creating Own Timing Subroutine..82
4.5 Management of Programs with JMAKE Precompiler82

4.5.1 Accessing JLP global parameters and variables82
4.5.2 Using JMAKE to manage own data structures........................83
4.5.3 Using JMAKE precompiler options..86
4.5.4 Using JMAKE in other programs ..87

4.6 Using JLP Data Structures and Subroutines ...87
4.6.1 Listing headers of subroutines with JLP87
4.6.2 Changing JLP subroutines ..88
4.6.3 JLP data variables...88

Variable lists...88
Special variables ..89

4.6.4 Accessing stored c- and x-data...90
4.6.5 Text buffers ...91
4.6.6 String manipulation...91
4.6.7 Printing subroutines ..92
4.6.8 Transformation subroutines ...92

4.7 Creating Own Transformation Subroutines ...93
4.8 User Designs for RHS Generation ..94
4.9 User Defined Data Input..94
4.10 Writing Own Report Writer ..96

4.10.1 General part of the report writer ..96
4.10.2 Report writer for schedule information..................................97

4.11 Creating Own Interface..98
4.11.1 Main program interface calling JLP...98
4.11.2 Interface in a subroutine called by JLP99
4.11.3 Replacing terminal input and buffer output........................100

4.12 Adding Own Commands to JLP...101

5. ERRORS AND TROUBLESHOOTING ...102

5.1 Syntax Errors ...102
5.2 Dimensions of Vectors..102
5.3 Problems in the Optimization ...103

5.3.1 Degeneracy due to linear dependency....................................103
5.3.2 Degeneracy when lower bound = minimum104

6. LINEAR PROGRAMMING ALGORITHM ..106

6.1 Problem Formulation ...106

6.2 Generalized Upper Bound Technique ...108
6.2.1 Basic idea: key variables..108
6.2.2 Entering variable ..111

New schedule enters...111
New z-variable enters...112
Slack or surplus variable enters ..113

6.2.3 Leaving variable ...114
The weight of a key schedule becomes zero115
An explicit basic schedules leaves ..116
A basic z-variable leaves ..116
A nonbinding constraint becomes binding (a slack
or surplus variable leaves) ...116

6.2.4 Updating step ...117
The weight of a key schedule becomes zero117
A column of the basis is changed..118
A row is added to the basis..118
A row is dropped from the basis ..119
Two rows of the basis are changed.......................................119
Computations after changing the basis................................119

6.3 Optimization Algorithm ..120
6.3.1 Minimization...120
6.3.2 Summary of the algorithm..120

Finding a feasible solution ...120
Finding optimal solution..121
How JLP selects the entering variable..................................121

6.4 Dual Analysis ..122
6.4.1 Primal problem...122
6.4.2 Dual problem..123
6.4.3 Relations between primal and dual problems.......................124

Shadow price of an x-variable ...124
Shadow price of a unit ..124
Reduced cost of a nonbasic schedule....................................125
Reduced cost for a nonbasic z-variable................................125
Objective function of the dual ...125
Computation of the shadow prices.......................................126

6.4.4 Cost of changing values of x-variables127
6.5 Domains ...129

Concluding Remarks: Future Developments ...130

References ..131

List of Commands...132

Index ...132

Preface

Ten years ago I applied linear programming for optimization problems where the
MELA simulator generated treatment schedules for a number of treatment units. When
doing some computing experiments with heuristic methods for solving iteratively
small problems, I worked out how the computations could be done without heuristics
so that the basis matrix is small and schedules are checked one after another. I began to
implement the ideas, but then other problems intervened. In 1989, when Tuula
Nuutinen needed a linear programming algorithm in her short term planning system, I
returned to these ideas and promised to make her a nice little subroutine. It was soon
found that I had reinvented the well known 'generalized upper bound technique'.

Initial goals for the software were very modest, but the project got out of the control as
I followed the possibilities appearing during development process, or tried to meet the
wishes of Tuula Nuutinen, or of Markku Siitonen who began to use the program in his
MELA system. The first phase was an optimization subroutine for simple problems
without interface properties. The second phase was to build an interface including
transformations and possibilities to state constraints for domains. Third major phase
was to include capabilities to handle general linear programming problems.

Installing the software to the GAYA-LP system of Hans Fredrik Hoen helped to make
the code more portable.

Tuula Nuutinen and Markku Siitonen read this manuscript, corrected several errors
and suggested improvements.

Suonenjoki June 3, 1992

Juha Lappi

8 Part 1 Introduction

1. INTRODUCTION

1.1 General

JLP is a linear programming software package designed to solve efficiently (fast and in
a small computer memory) planning problems of the following type. The plan is made
simultaneously for a number of treatment units (e.g. forest stands). A number of
treatment schedules is derived for each treatment unit. Treatment units can also be
called calculation units to indicate that they may result from grouping similar
treatment units together. It is hereafter expressed that schedules are simulated, but JLP
does not care how the treatment alternatives are generated. Each schedule is associated
with a vector of input and output variables over time. For simplicity these variables
will be called output variables. The decision maker is interested in the aggregated
output variables, i.e., in the sums of variables over the treatment schedules. Treatment
schedules can also be aggregated within some domains, i.e., in subsets of calculation
units.

It is assumed that the goals of the decision maker can be described as a linear
programming optimization problem. For instance, we may want to maximize net
present value of future incomes, subject to constraints that the income level is
nondecreasing in each subregion and the total volume after planning period is above a
minimum level. For the general background for using linear programming in
management planning see, e.g., Kilkki (1987) and Dykstra (1984). In this report, it is
assumed that the reader is familiar with the basic properties of linear programming.

In addition to the aggregated output variables, the problem formulation may contain
other variables whose values are determined in the optimization process. For instance,
a goal programming problem (see, e.g., Steuer 1986) includes variables describing how
much aggregated output variables deviate from target values, and the utility model of
Lappi and Siitonen (1985) includes variables for consumption, savings and loans.

JLP is designed to be portable among different computers and planning systems. The
package is planned to be distributed as FORTRAN 77 source code. It includes a general
purpose precompiler JMAKE by which the user can easily tailor vectors and working
areas according to the available memory and size of the problems (the user in charge of
building an executable version of the program will be hereafter called 'system
manager'). JMAKE can also be used to add some system dependent features to the
programs. The package includes subroutine templates that the system manager can

 JLP 9

modify for the special input and report generating tasks. The two main parts of the
package are the interface part (subroutine jlpin) and the optimization part (subroutine
jlpopt). To guarantee portability, the interface is built using simple command language
that is interpreted with standard FORTRAN I/O functions. It is also possible to
communicate with the interface using simple buffers. Thus a more sophisticated (and
computer dependent) interface with menus and windows, etc. can be built on the
provided interface. The system manager can easily access the solution also in binary
form.

The program can read data using different formats, and the system manager can
provide special input subroutines. These input routines can also simulate the schedules
instead of reading them from files. The program can save the data in fast working files.
If there is enough memory available, the whole data are stored in the memory. If there
is not enough memory, a part of the data is stored in a working file. Thus also large
problems can be solved with small memory. New variables can be created using
transformations. It is possible that data contain only the physical variables, and, e.g.,
the cost and price variables are created during the optimization. The same
transformation compiler is used for defining domains where different constraints
should be fulfilled. The domains can overlap in any manner (i.e. there can be
simultaneously domains for North and South, and poor and good sites).

1.2 Optimization Problem

Mathematically the optimization problems considered can be described as follows
(more complete mathematical treatment is in Part 6). Let us first define a linear
programming problem without assuming domains for constraints. An optimization
problem can be presented as:

Max or Min (1.1) z0 � a0k xk
k�1

p

� � b0k
k�1

q

� zk

subject to the following constraints:

��

ct � atk xk
k�1

p

� � btkzk
k�1

q

� � Ct , t �1,�, r (1.2)

��

xk � xk
ijwij

j �1

ni

�
i�1

m

� � 0, k �1,�, p (1.3)

��

wij
j�1

ni

� � 1, i � 1,�,m (1.4)

10 Part 1 Introduction

wij � 0 for all i and j (1.5)

zk � 0 for k � 1,... ,q , (1.6)

where

m = number of treatment units

ni = number of management schedules for unit i

wij = the weight (proportion) of the treatment unit i managed according to
management schedule j

xk
ij = amount of item k produced or consumed by unit i if schedule j is applied

xk = obtained amount of output variable k, k=1,...,p

zk = an additional decision variable, k=1,...,q

atk = fixed real constants for t=1,...,r, k=1,...,p

btk = fixed real constants for t=1,...,r, k=1,...,q

r = number of utility constraints

The problem is solved by finding proper values for the unknown variables wij, xk and
zk.

The constraints of form (1.2) are for the aggregated variables and other decision
variables of which the decision maker is interested. These constraints will be called
utility constraints. Term 'constraint' without qualifications refers later to the utility
constraints. Constraints (1.3) define the aggregated output variables xk as the sums
over the calculation units. Coefficients are known constants produced by the
simulation system. If the simulation system computes output quantities per area unit,
then coefficients are obtained from these relative figures by multiplying with the
area of the unit. The constraint (1.3) can be equivalently written as:

xk
ij

ijxk

��

xk � xk
ijwij

j�1

ni

�
i�1

m

� , k � 1,�, p (1.7)

The less intuitive form is used in (1.3) in order to follow the linear programming
convention that the right hand side is always a constant. Depending on the context,
term x-variable refers either to an aggregated xk -variable defined in (1.3) or in (1.7), or
to constants . xk

ij

 JLP 11

Constraints (1.4) are so called area constraints saying that proportions of treatment
schedules in a treatment unit need to sum up to one. A variable wij is called a w-variable
or a weight.. A variable zk is called a z-variable. W-variables and z-variables are decision
variables by which we can fix a possible solution. Even if aggregated xk variables are
formally unknown variables of the optimization problem, their values can be trivially
computed from Eq. (1.7) if the values of w-variables are known. Z-variables and
(aggregated) x-variables are utility variables that determine how good the solution is. As
described, e.g., by Kilkki (1987), all variables in a linear programming problem can be
interpreted as variables in an implicit utility model. It is assumed in the above problem
formulation that the identity of management units is preserved throughout the
planning horizon. Thus the planning model can be classified as type Model I in the
Model I / Model II terminology (see, e.g., Dykstra 1984)

The problem is a standard linear programming problem (some simple technical tricks
may be needed depending on what is meant by 'standard'), and thus any linear
programming software can be used to solve it.

A domain specific objective function or constraint can be defined in the above
formulation by defining to be zero if unit i does not belong to the intended domain.
The domain specifications are made explicit in the following formulation. Let Dt denote
a subset of units (i.e. a subset of the set {1,...,m}) that are used on row t. Domains for
different rows can be equal. Then a linear programming problem with domain
specifications is:

xk
ij

Max or Min (1.8) z0 � a0k xkD0
k�1

p

� � b0k
k�1

q

� zk ,

 subject to:

��

ct � atk xk Dt
k�1

p

� � btk zk
k�1

q

� � Ct , t � 1,�,r (1.9)

��

xkDt
� xk

ijwij
j�1

ni

�
i�Dt

� � 0 , k �1,�, p, t � 1,.... ,r (1.10)

��

wij
j�1

ni

� �1, i �1,�, m (1.11)

wij � 0 for all i and j (1.12)

zk � 0 for k � 1,... ,q (1.13)

12 Part 1 Introduction

It is thus assumed that aggregated output variables appearing in the same constraint
are all for the same domain. X-variables from different domains can be included in the
same constraint using additional z-variables, as will be described later. Z-variables are
always assumed to be global. Variables xkDt will be called domain variables if it is

emphasized that the summation is over a given domain.

A user of JLP needs only to define objective function (1.1) or (1.8) and the utility
constraints (1.2) or (1.10), and JLP takes care of the other constraints utilizing the special
structure of the problem.

1.3 Purpose of the Report

The purpose of this report is:

1) To be user's guide and reference manual for the JLP software when used 'as is'.

2) To help to install the software into a larger planning system.

3) To help to understand how linear programming can be used in (forest)
management planning problems, and how the results can be interpreted.

4) To give insight to mathematical structure of planning problems considered.

5) To make a break point in the development process of the software.

The main chapters of the report are called 'parts' in order to indicate that they can be
largely read independently of each others. The main parts of the 'Parts' are called
'Chapters'. Because the report is intended to serve as a manual, a certain amount of
repetition is intentional.

 JLP 13

2. USER'S GUIDE

2.1 Overview

This part describes the standard interface of the JLP package. A system manager can
add extra features or develop an own interface (see Part 4).

Some of the basic features of the standard JLP are:

Commands can be entered from the terminal or read from files using include
command. A specific section of a file can be included. Included files can be nested.
Included files can be listed without executing the commands.

Output can be written to output files. The amount of output can be controlled.

On-line help is available. The user or system manager can modify the help file.

With time command the user can measure the time of any section of the session.

Data can be read in from several files, using different formats or subroutines
provided by the system manager.

Data can be stored in a special JLP format.

Variables are referred with variable names. New variables can be created with
transformations. Transformed data can be written on the disk.

New schedules can be created by duplicating old schedules and modifying
duplicates with transformations.

A treatment unit can be split so that different parts inherit different schedules from
the original unit.

In addition to the x-variables that describe the simulated alternatives, JLP can utilize
variables that describe data files (d-variables) and treatment units (c-variables). These
variables can be used as parameters in transformations of x-variables, or they can be
used to define domains for constraints.

Several RHS's can be defined in the same problem definition, and the alternative
problems implied can be solved in a loop.

JLP can solve ordinary linear programming problems (i.e. without simulated data for
treatment units).

Values of aggregated x-variables not included in the problem can be computed using
weights provided by the solution.

14 Part 2 User's Guide

JLP can compute the shadow prices of treatment units, shadow prices of x-variables,
reduced costs of the nonbasic z-variables, and reduced costs for forcing a nonoptimal
schedule into the solution. JLP can compute also the cost of forcing an x-variable to
get a smaller or greater value than it had in the solution.

In this chapter only the basic features of different commands are described. For each
topic, more details are given in the reference manual (Part 3).

2.2 Command Syntax

All commands need to be in lower case. A command line can contain spaces and tabs. If
the last character of a line is '>', then the logical command line continues to the next
physical line (record). Commands can be read from terminal (or input stream in batch
mode) or from files using include command. Command lines starting with '*', '!', or ';'
are comments, and the rest of line following '!' is also a comment. Continuation
character '>' is significant also after '!', the next line is regarded as the continuation of
the comment.

pIf '>' is the last character of a command line, then the next line is not interpreted as a
continuation line if '!' is put after the command. This is important to remember when
using path command in systems where directory can be given as: '<directory>'. For
instance, the following command works as intended:

path disk2:<mela.data> !

Names of commands are checked as long as the name is uniquely determined (usually
four characters are significant). The rest of the command name is ignored. In this
manual, a longer form of a command name may be used when the command is
introduced. A shorter form is used thereafter.

Commands can have options starting with '/'. Options are appended to the command
name without space. In options (e.g. '/all') only the first character is usually
significant, except in negation options (e.g. '/nocost') three characters are significant.
If more characters are significant, it is always indicated. If a command has several
options, the order of options is free.

Examples:

The following input lines are equivalent (in schedules command four characters are
significant):

schedules/all 20 ! comment
 sche/a 20
schepeteus/argum#entr >
 20

 JLP 15

A group of commands belonging together is called a paragraph. Paragraphs end always
with '/'. For instance the following paragraph defines a linear programming problem:

problem
x1=0
x2 max
/

2.3 Examples

JLP solved the following examples in Macintosh Quadra 700. JLP was compiled with
Language Systems FORTRAN 3.0 compiler. Data were simulated with MELA system
(see Siitonen 1983). MELA specific features are not used in examples. Management
schedules were simulated for five ten-year periods. Management operations are
assumed to take place at midpoints of periods. The following variables were taken from
MELA files into standard sequential files:

vol.0,-vol.5 = total volumes, initial and after each period
npv.0,-npv.5 = net present values
cutvol.1,-cutvol.5 = annual volume harvested in each period
clearcut.1,-clearcut.5 = annual clear cut areas
income.1,-income.5 = annual net incomes

When JLP is started, it prompts

jlp>

and waits for commands from terminal (or input stream). The commands for the
following examples are stored in file ex.in. File ex.in contains a section:

*ex1
...commands
*end ex1

This section can be submitted using include command.

2.3.1 A problem with x-variables: nondecreasing incomes

jlp>incl ex.in/*ex1:*
> *ex1
> xdat savo.xdb ! file containing x-data (simulated schedules)
> xform b ! x-variables are in binary file
> xvar vol.0,-vol.5,npv.0,-npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5,>
> income.1,-income.5 !variables in x-data
> cdat savo.cda ! text file containing c-data
> cvar ns ! c-data must always contain number_of_schedules_variable 'ns'
> cform * ! c-data can be read using FORTRAN free format '*'
> time ! start timing
starting timing..
> prob
needs to read data ...
reading xdat-file: savo.xdb
reading cdat-file: savo.cda

16 Part 2 User's Guide
number of calculation units, schedules: 433 12100
number of variables in xmat-matrix, max of ns . . 27 181
memory used by xmat, units written to disk 37% 0
x-variables: vol.0,vol.1,vol.2,vol.3,vol.4,vol.5,npv.0,npv.1,npv.2,npv.3,
npv.4,npv.5,cutvol.1,cutvol.2,cutvol.3,cutvol.4,cutvol.5,clearcut.1,
clearcut.2,clearcut.3,clearcut.4,clearcut.5,income.1,income.2,income.3,
income.4,income.5
number of variables in cmat-matrix: 1
memory used by cmat 44%
c-variables:ns
number of rejected schedules: 0
 data ready.
> income.2-income.1>0
> income.3-income.2>0
> income.4-income.3>0
> income.5-income.4>0
> npv.0 max
> /
number of domains, domain combinations: 1 1
number of z-variables, temporary x-variables . . . 0 4
__
domain: # of units
row tolerance min max
__
all: 433
 1 0.4911442E-01 -1018118. 2126654.
 2 0.7530341E-01 -1961494. 3260638.
 3 0.1083217 -3036788. 4690328.
 4 0.1455694 -4459802. 6303157.
 5 0.7732226 0.2381406E+08 0.3348054E+08
> time ! print time since last time command
elapsed: 32.71655 total: 32.71655
> solve ! solve the problem defined in problem paragraph
starting optimization...
ok(0) constr. 2: 80632.089 w+z basics: 0 0
ok(0) constr. 3: 98079.493 w+z basics: 0 0
ok(0) constr. 4: 684918.26 w+z basics: 0 0
ok(2) constr. 1: 664.13396 w+z basics: 0 0
**FEASIBLE
**OBJECT VARIABLE: 30759195. w+z basics: 0 0
unit= 1, OBJ VAR= 32697588. w+z basics: 1 0
unit= 1, OBJ VAR= 33225259. w+z basics: 3 0
...
unit= 1, OBJ VAR= 33455594. w+z basics: 4 0
unit= 1, OBJ VAR= 33458323. w+z basics: 4 0
unit= 1, OBJ VAR= 33458704. w+z basics: 4 0
unit= 1, OBJ VAR= 33459040. w+z basics: 4 0
unit= 1, OBJ VAR= 33459073. w+z basics: 4 0
**SOLUTION, OBJ VAR= 33459073. w+z basics: 4 0 unit= 332
s solution, optimization time ...11.14990
time for computing x-variables: 20.35009
__
DOMAIN all: 433 units
__
row value shadow lower upper
 price bound bound
__
 1) income.2-income.1 0.00000000 -0.2052712 0.000000 L
 2) income.3-income.2 0.00000000 -0.2147269 0.000000 L
 3) income.4-income.3 0.00000000 -0.0895401 0.000000 L
 4) income.5-income.4 0.00000000 -0.0410396 0.000000 L
 5) npv.0 33459072.9 1.00000000 max
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 vol.0 146895.466 INF INF
 vol.1 160940.368 0.00575244 0.09252250
 vol.2 168948.219 0.00345704 0.00000000
 vol.3 176632.726 0.00433317 0.00000000
 vol.4 201095.434 0.00000000 0.02377209
 vol.5 247916.318 0.00391562 0.00000000

 JLP 17
 npv.0 33459072.9 1.00000000 1.00000000 INF
 npv.1 35829849.0 0.00017427 0.00000000
 npv.2 39015973.1 0.00007436 0.00000000
 npv.3 43297856.3 0.00004199 0.00000000
 npv.4 49052348.2 0.00002650 0.00000000
 npv.5 56785902.2 0.00001771 0.00000000
 cutvol.1 5514.61876 1.45063281 0.09019085
 cutvol.2 5894.09835 0.80362908 0.31202058
 cutvol.3 6087.74131 0.08545117 0.61943881
 cutvol.4 5926.31498 0.41053064 0.02250821
 cutvol.5 5340.53036 0.00000000 1.26948442
 clearcut.1 18.3550669 1131.97075 191.506863
 clearcut.2 8.74457034 INF 10068.0952
 clearcut.3 3.80288005 228.412333 1507.36195
 clearcut.4 7.36293925 88.5195472 10242.1571
 clearcut.5 7.71705472 212.978217 1084.61137
 income.1 788108.446 -0.2052712 0.00000000 0.00202079
 income.2 788108.443 -0.0094556 0.00000000 0.00202079
 income.3 788108.441 0.12518680 0.00000000 0.00202079
 income.4 788108.439 0.04850047 0.00000000 0.00202079
 income.5 788108.439 0.04103964 0.00000000 0.00202079
__
> *end ex1
jlp>

A '>' character at the beginning of a line indicates that the line is read from the included
file. Commands xdata, xform and xvar define the treatment schedule information for
JLP. Commands cdata, cform and cvar define information about the calculation
units. JLP needs to know at least how many schedules there are in each treatment unit
(variable ns). When the problem paragraph starts, JLP reads data into the memory.
Thus the data definitions need to be before problem command but the order of
definitions does not matter. After reading the problem definition, JLP computes the
smallest and largest possible values of the aggregated output variables (x-variables).
These bounds will rule out some problems as infeasible immediately. These bounds are
also used for determining tolerance values of round-off errors.

In the example, all calculation units belonged to the same domain (all:). Command
solve asks JLP to solve the problem. The x-variable section of the output is computed
after the solution is obtained. These computations took more time than the
optimization as such (times are in seconds). A part or all of these after-solution
computations can be avoided. The shadow prices of x-variables income.1,-income.5 are
the shadow prices of constraints (1.3) defining the x-variables. They tell how the
objective function would change if the problem remains the same and we get an extra
unit of the x-variable from another source. The cost of decrease and cost of increase are the
marginal changes in the objective function if we would add a new constraint that
would require the corresponding x-variable to decrease or increase by one unit from the
value implied by the solution. The output and interpretation of shadow prices are later
described in detail.

18 Part 2 User's Guide

2.3.2 A problem with x- and z-variables: goal programming

The next example includes also z-variables, i.e., technical variables needed in some
linear programming problems. Suppose that we would like to have such a management
plan that variables income.1,-income.5 would have values 800, 850, 900, 1000 and 1100
thousands, and variable npv.5 would have value 50 mill. However, a problem with
these constraints is infeasible. We might then search for a plan that minimizes the sum
of differences between income variables and the target values. As all z-variables are
nonnegative, we need to define deviations from target values using slack and surplus
variables. Such a goal programming problem definition is stored in file ex.in starting
with an label '*ex2'. Thus our session might continue as follows (part of the output is
deleted).
jlp>incl ex.in/*ex2:*
> *ex2
> prob
> income.1 -sp.1 + sl.1 = 800000 / = 850000 ! The values after '/' define
> ; alternative RHS's
> income.2 -sp.2 + sl.2 = 850000 / = 900000
> income.3 -sp.3 + sl.3 = 900000 / = 1000000
> income.4 -sp.4 + sl.4 = 1000000 / = 1000000
> income.5 -sp.5 + sl.5 = 1100000 / = 1100000
> npv.5 > 50000000
> sp.1 + sl.1 + sp.2 + sl.2 + sp.3 + sl.3 + sp.4 + sl.4 + sp.5 + sl.5 min
> /
number of domains, domain combinations: 1 1
number of z-variables, temporary x-variables . . . 10 0
__
domain: # of units
row tolerance min max
__
all: 433
 1 0.2798653E-01 -2704.495 1211817.
 2 0.4927205E-01 4919.161 2133480.
 3 0.7595614E-01 -26151.70 3288901.
 4 0.1088024 -35820.53 4711143.
 5 0.1466871 -42605.84 6351553.
 6 2.487337 0.2907604E+08 0.1077017E+09
 7 0.2798653E-01
> *end ex2
jlp>solve
starting optimization...
ok(0) constr. 6: 57299366. w+z basics: 0 0
ok(3) constr. 1: 800000.00 w+z basics: 0 1
ok(3) constr. 2: 850000.00 w+z basics: 0 2
ok(3) constr. 3: 900000.00 w+z basics: 0 3
ok(3) constr. 4: 1000000.00 w+z basics: 0 4
ok(3) constr. 5: 1100000.0 w+z basics: 0 5
**FEASIBLE
**OBJECT VARIABLE: 744657.25 w+z basics: 0 5
unit= 1, OBJ VAR= 741184.00 w+z basics: 0 5
unit= 1, OBJ VAR= 213000.08 w+z basics: 4 2
...
unit= 1, OBJ VAR= 137757.85 w+z basics: 5 1
unit= 1, OBJ VAR= 137750.84 w+z basics: 5 1
unit= 1, OBJ VAR= 137750.25 w+z basics: 5 1
**SOLUTION, OBJ VAR= 137750.25 w+z basics: 5 1 unit= 146
s solution, optimization time ...24.41650
time for computing x-variables: 27.23339
__
DOMAIN all: 433 units
__
row value shadow lower upper

 JLP 19
 price bound bound
__
 1) income.1-sp.1+sl.1 800000.000 -1.0000000 800000.0 U
 2) income.2-sp.2+sl.2 850000.000 -0.7715559 850000.0 U
 3) income.3-sp.3+sl.3 900000.000 -0.5931115 900000.0 U
 4) income.4-sp.4+sl.4 1000000.00 -0.4444153 1000000. U
 5) income.5-sp.5+sl.5 1100000.00 -0.3276779 1100000. U
 6) npv.5 50000000.0 -0.0260183 50000000 U
 7) sp.1+sl.1+sp.2+sl.2+
 sp.3+sl.3+sp.4+sl.4+sp.5+sl.5 137750.254 1.00000000 min
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 vol.0 146895.466 INF INF
 vol.1 172770.584 0.00000000 0.00000000
 vol.2 181429.917 0.00000000 0.00000000
 vol.3 182321.570 0.00000000 0.00000000
 vol.4 186760.039 0.00000000 0.00000000
 vol.5 196640.038 0.00000000 0.00000000
 npv.0 33334940.3 0.00000000 0.96435642
 npv.1 37122072.3 0.00000000 0.00000000
 npv.2 40035120.1 0.00000000 0.00000000
 npv.3 43370374.6 0.00000000 0.00000000
 npv.4 46693402.9 0.00000000 0.00000000
 npv.5 50000000.0 0.02601837 INF INF
 cutvol.1 4547.23514 0.00000000 0.00000000
 cutvol.2 6167.46797 0.00000000 0.00000000
 cutvol.3 6858.98612 0.00000000 0.00000000
 cutvol.4 7328.18340 0.00000000 0.00000000
 cutvol.5 7693.73133 0.00000000 0.00000000
 clearcut.1 13.8998666 0.00000000 0.00000000
 clearcut.2 10.0533873 0.00000000 0.00000000
 clearcut.3 6.55008829 0.00000000 0.00000000
 clearcut.4 8.95997921 0.00000000 0.00000000
 clearcut.5 14.4669117 0.00000000 0.00000000
 income.1 662249.745 1.00000000 0.00000000 0.29608234
 income.2 849999.999 0.77155591 0.22844408 1.77155588
 income.3 900000.000 0.59311153 0.40688847 1.59311154
 income.4 1000000.00 0.44441532 0.55558468 1.44441535
 income.5 1099999.99 0.32767794 0.67232208 1.32767801
__
z-variable value reduced cost
__
sp.1 0.00000000 0.00000000
sl.1 137750.254 0.00000000
sp.2 0.00000000 0.22844408
sl.2 0.00000000 1.77155591
sp.3 0.00000000 0.40688846
sl.3 0.00000000 1.59311153
sp.4 0.00000000 0.55558467
sl.4 0.00000000 1.44441532
sp.5 0.00000000 0.67232205
sl.5 0.00000000 1.32767794
jlp>

We see that when deviations have the same weight for each period, only income during
the first period deviates from the target. Output 'w+z basics: 5 1' tells that there
are 5 basic weight variables and one basic z-variable in the solution. JLP computes for
each z-variable the reduced cost that tells the marginal price of forcing the variable to
the solution. For a basic (nonzero) z-variable, the reduced cost is zero.

The problem with the second set of RHS's defined in the problem paragraph could be
then solved with:
jlp>solve 2

20 Part 2 User's Guide

Both x- and z-variables are also needed to solve, e.g., the utility model of Lappi and
Siitonen (1985) which provides an alternative linear programming problem formulation
for studying smooth income patterns.

2.3.3 A problem with z-variables: an ordinary LP problem

The third example shows that JLP can solve also ordinary linear programming
problems (i.e. without simulated treatment schedules):

jlp>incl ex.in/*lu52:*
> *lu52 This example is from Luenberger (1973) p. 52
> prob
> 2*x1 +x2 +3*x3-2*x4+10*x5 min ! x1, -x5 are here z-variables, because they
; were not defined in xvar or xtran
> x1+x3-x4+2*x5=5
> x2+2*x3+2*x4+x5=9
> x1<7
> x2<10
> x3<1
> x4<5
> x5<3
> /
no x-variables, number of z-variables 5
tolerance for all rows: 0.00010000
> *end lu52
jlp>solve
starting optimization...
ok(0) constr. 4: 0.00000000 w+z basics: 0 0
ok(0) constr. 5: 0.00000000 w+z basics: 0 0
ok(0) constr. 6: 0.00000000 w+z basics: 0 0
ok(0) constr. 7: 0.00000000 w+z basics: 0 0
ok(0) constr. 8: 0.00000000 w+z basics: 0 0
ok(3) constr. 2: 5.0000000 w+z basics: 0 1
ok(3) constr. 3: 9.0000000 w+z basics: 0 3
**FEASIBLE
**OBJECT VARIABLE: 29.000000 w+z basics: 0 3
unit= 1, OBJ VAR= 12.000000 w+z basics: 0 4
unit= 1, OBJ VAR= 12.000000 w+z basics: 0 4
**SOLUTION, OBJ VAR= 12.000000 w+z basics: 0 4 unit= 1
s solution, optimization time ...0.250000
__
row value shadow lower upper
 price bound bound
__
 1) 2*x1+x2+3*x3-2*x4+10*x5 . . 12.0000000 1.00000000 min
 2) x1+x3-x4+2*x5 5.00000000 4.00000000 5.000000 L
 3) x2+2*x3+2*x4+x5 9.00000000 1.00000000 9.000000 L
 4) x1 7.00000000 -2.0000000 7.000000 U
 5) x2 1.00000000 0.00000000 10.00000
 6) x3 1.00000000 -3.0000000 1.000000 U
 7) x4 3.00000000 0.00000000 5.000000
 8) x5 0.00000000 0.00000000 3.000000
__
z-variable value reduced cost
__
x1 7.00000000 0.00000000
x2 1.00000000 0.00000000
x3 1.00000000 0.00000000
x4 3.00000000 0.00000000
x5 0.00000000 1.00000000
jlp>

Note that the term unit appearing in the printing of the optimization algorithm does
not mean anything. JLP interprets the variables x1,–x5 as z-variables because they

 JLP 21

were not defined in a previous xvar command or in xtran transformations
(transformations creating new x-variables). JLP is not efficient in solving ordinary linear
programming problems, but in small problems that may be of less interest.

2.3.4 A problem with several data files and domains

The following problem uses following properties of JLP: data can be read from several
files, there can be transformations of variables, symbolic names for constants can be
defined, constraints can be defined for different domains (subsets of units), results can
be printed for additional printing domains (most part of printing is deleted):
jlp>incl ex.in/*exd:*
> *exd ! example including domains
> xdat savo.xdb,vaasa.xdb ! two data sets
> xform b
> xvar vol.0,-vol.5,npv.0,-npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5,>
> income.1,-income.5
> cdat savo.cda,vaasa.cda ! c-data
> cvar ns
> cform *
> ctran ! data do not contain c-variables, let us make an artificial 'owner'
> owner=unit-2*int(unit/2) ! owner = 0,1
> /
> const private,public=1,0 ! make symbolic names for owner groups
> prob
needs to read data ...
reading xdat-file: savo.xdb
reading cdat-file: savo.cda
number of calculation units, schedules: 433 12100
reading xdat-file: vaasa.xdb
reading cdat-file: vaasa.cda
number of calculation units, schedules: 406 12872
total number of calculation units, schedules: . . 839 24972
number of variables in xmat-matrix, max of ns . . 27 200
memory used by xmat, units written to disk 75% 0
x-variables: vol.0,vol.1,vol.2,vol.3,vol.4,vol.5,npv.0,npv.1,npv.2,npv.3,
npv.4,npv.5,cutvol.1,cutvol.2,cutvol.3,cutvol.4,cutvol.5,clearcut.1,
clearcut.2,clearcut.3,clearcut.4,clearcut.5,income.1,income.2,income.3,
income.4,income.5
number of variables in cmat-matrix: 2
memory used by cmat 84%
c-variables:ns,owner
number of rejected schedules: 0
 data ready.
> data=savo.and.owner=private: data=vaasa.and.owner=private: owner=public:
> income.2-income.1>0
> income.3-income.2>0
> income.4-income.3>0
> income.5-income.4>0
> all:
> npv.0 max
> /
number of domains, domain combinations: 4 3
number of z-variables, temporary x-variables . . . 0 4
__
domain: # of units
row tolerance min max
__
data=savo.and.owner=private: 217
 1 0.4705846E-01 -525772.3 1021169.
...
data=vaasa.and.owner=private: 203
 5 0.1653200E-01 -173746.1 335599.5
...
owner=public: 419

22 Part 2 User's Guide
 9 0.3611564E-01 -723164.0 1513245.
...
all: 839
 13 0.5274830 0.3129301E+08 0.4425582E+08
> ! print results for some x-variables only (default is all variables)
> ! variables npv.1,-npv.4 are not printed
> ! we may get results for domains not used in problem
> show/domain vol.0,-vol.5,npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5
> data=savo:
> data=vaasa:
> /
> solve ! solve the problem defined in problem paragraph
starting optimization...
ok(0) constr. 2: 46468.188 w+z basics: 0 0
...
ok(2) constr. 5: 2228.2402 w+z basics: 1 0
**FEASIBLE
**OBJECT VARIABLE: 40315249. w+z basics: 1 0
unit= 1, OBJ VAR= 41193914. w+z basics: 4 0
...
unit= 1, OBJ VAR= 44209549. w+z basics: 12 0
**SOLUTION, OBJ VAR= 44209549. w+z basics: 12 0 unit= 69
s solution, optimization time ...30.09960
time for computing x-variables: 195.7001
__
DOMAIN data=savo.and.owner=private: 217 units
__
row value shadow lower upper
 price bound bound
__
 1) income.2-income.1 0.00000000 -0.1056677 0.000000 L
 2) income.3-income.2 0.00000000 -0.1513036 0.000000 L
 3) income.4-income.3 0.00000000 -0.0753490 0.000000 L
 4) income.5-income.4 0.00000000 -0.0418552 0.000000 L
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 npv.0 16503894.6 1.00000000 INF
 vol.0 72450.4998 INF INF
...
__
DOMAIN data=vaasa.and.owner=private: 203 units
__
row value shadow lower upper
 price bound bound
__
 5) income.2-income.1 0.00000000 -0.3187801 0.000000 L
 6) income.3-income.2 0.00000000 -0.3297849 0.000000 L
 7) income.4-income.3 0.00000000 -0.1762447 0.000000 L
 8) income.5-income.4 0.00000000 -0.0971891 0.000000 L
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 npv.0 5152362.07 1.00000000 INF
...
__
DOMAIN owner=public: 419 units
__
row value shadow lower upper
 price bound bound
__
 9) income.2-income.1 0.00000000 -0.2996129 0.000000 L
 10) income.3-income.2 0.00000000 -0.2838323 0.000000 L
 11) income.4-income.3 0.00000000 -0.1511955 0.000000 L
 12) income.5-income.4 0.00000000 -0.0655068 0.000000 L
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 npv.0 22553292.3 1.00000000 INF

 JLP 23
...
__
DOMAIN all: 839 units
__
row value shadow lower upper
 price bound bound
__
 13) npv.0 44209549.0 1.00000000 max
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 npv.0 44209549.0 1.00000000 0.00000000 0.00750263
...
__
show/domain data=savo: 433 units
__
 x-variable value shadow cost of cost of
 price decrease increase
__
 npv.0 . . .
...
__
show/domain data=vaasa: 406 units
__
 npv.0 . . .
...

For each domain, JLP prints first the problem rows, and thereafter the x-variables
implied by the options of the show command. For domains given only with
'show/dom', there are no problem rows to be printed.

2.4 General Operating Commands

In this section the following general operating commands are described:

batch – JLP is running in batch mode
include – include commands from a file
list – list a section of a file
help – get on-line help
outfile – write output into a file
outlevel – define the amount of the output
printlevel – define the amount of the terminal output
time – timing
pause - halt execution

2.4.1 Batch mode

The default is that the program is running in interactive mode. If the program is
running in batch mode, then the first command should be batch. In batch mode, the
program stops (or control returns to the main program provided by the system
manager) if an error occurs while in interactive mode only error messages are printed,

24 Part 2 User's Guide

open include files are closed and the control is given to the terminal input. In batch
mode, the program does not print the prompts (e.g. 'jlp>') when reading from the input
stream.

2.4.2 Include

Commands can be read in from files using include command. For instance:

incl data.def

Part of the file can be read in giving initial and final address:

incl ex.in/*ex2:*

In this case the program reads the file until it reaches a line starting with '*ex2' (initial
spaces are ignored). Input from file stops as a line starting with '*' is met. Both the first
and last line can be ordinary commands that are executed. It may be a good practice to
use comment lines (starting with '*','!' or ';') as addresses in the files. If the final
address is not given, then the rest of file is included:

incl ex.in/*ex2:

If the command is:

incl ex.in/const

then only one line is read in. The default is that included files can be nested up to 6
levels.

2.4.3 List

A file or a part of it can be printed using list command. The syntax of list is as of
include command, the difference is that all lines read are interpreted as comments.
This command may be useful if you want to check what a file or a part of it contains
before executing it using include command. The headers of all subroutines in file
jlpsub.src are printed for Part 4 using:

list/all jlpsub.src/*=:**

Option '/all' means that all segments between lines starting with '*=' and '**' are
printed. This option is available also for include.

2.4.4 Help

On-line help is based on the list command and on a help file that the user or system
manager can edit. Command help alone is translated internally as:

 JLP 25

list/all jlp.hlp/*. This prints all header lines in file jlp.hlp starting with '*'. The
contents of a cell of the help file starting e.g. with '*list' can be seen using command

help list

You can also change the help file:

helpfile own.hlp

Thereafter the help information is read from file own.hlp. Each cell in the help file ends
at a line starting with ';'. The current help file jlp.hlp is printed in Part 3.

2.4.5 Output

The user can control both the amount and channels of output (terminal and/or file
and/or an internal buffer). Output to the different channels is controlled
independently, so that the user can direct output to any combination of the output
channels (e.g. so that output goes to all three channels, or nowhere). Output to the
internal buffer and the access to the solution vectors are described in Part 4.

Output file (outfile)

Printed output can be written at any time to a file (in Macintosh with LS-FORTRAN this
is seldom useful as all output goes to a window that can be edited, printed and saved
after the session). An output file is opened as:

outfile out.txt

The output file can be changed by giving a new outfile command. If no file name is
given, then the old output file is just closed. Writing to the output file does not affect
the terminal output, which is controlled independently. See Chapter 4.2 for how new
files are opened in a non-VMS environment.

Level of output (printlevel, outlevel)The amount of output to the default
output unit (the screen in interactive mode) is controlled using printlevel command.
Command

printlevel 0

prevents all printing. Using 'printlevel 1' only the solutions of the linear
programming problems are printed (in addition to the commands read from include
files). Printlevels 2 and 3 give information about the structure of the data and the about
the progress of the optimization algorithm. Higher printlevels than 3 should be used
only in trouble-shooting.

26 Part 2 User's Guide

The amount of output to the output file is controlled using outlevel command. It
works exactly as the printlevel command. Note that one can use different
printlevel and outlevel in different parts of the job. Selected solutions of the
linear programming problems can be printed to the output file as follows:

outfile sol.out
outlevel 0 ! 'outfile' sets automatically the outlevel to 1
problem
... !
solve

... the solution shows that the problem needs to be modified

solve +1 ! solve with next RHS or define and solve a new problem

...solution is OK

outlevel 1 ! start printing to the file
recall ! the last solution can be reprinted with recall
schedules ! basic schedules can be printed with this command
outlevel 0 ! start searching new interesting solutions

2.4.6 Time

If the system manger has provided a subroutine for measuring time, then the elapsed
time between two points in the flow of program can be measured with command time.
The total time from the first time command is also printed. If the system manager has
supplied a subroutine for measuring CPU time, it is also printed. Time used to solve a
problem is automatically printed.

2.4.7 Pause

If the commands are read from an include file, JLP may print results too fast. With
pause command the execution of the program halts if the program is not running in
batch mode. Typing <return>, the program continues. The system manager may
provide a subroutine with better scrolling properties for the terminal output (see
Chapter 4.11).

2.5 Data Management

JLP can solve linear programming problems including x-variables defined as (see
Eqs.1.3, 1.7 and 1.10):

��

xk � xk
ijwij

j�1

ni

�
i�1

m

� , k �1,�, p

 JLP 27

The simulation system generates coefficients for different treatment units i
schedules j and variables k. Generally the number of coefficients can be very large.
Thus the main effort in the data access is to handle efficiently these coefficients (x-
variables).

xk
ij

xk
ij

ij

JLP can solve problems with different constraints for different domains, i.e., groups of
treatment units. Thus JLP needs also the capabilities for handling variables that
describe treatment units. These variables are called c-variables. A common description
(identification) to all units read from the same xdat file can be given with d-variables.
The user can also define symbolic names for numeric constants. Constants, d- and c-
variables can be used as parameters of transformations or for defining domains. This
chapter describes briefly how JLP manages constants, d-variables, c-variables and x-
variables (i.e. coefficients). These variables are called data variable (other variables
getting values in the optimization process, e.g., z- and w-variables are linear
programming variables).

xk

2.5.1 Summary of data manipulation

Initilization commands

(necessary commands are in bold)

path directory of the data
dtran transformations made when data files change
xdat the names of x- files
xvar the names of x-variables in the xdat files
xform format for reading xdat files
xtran transformations of x-variables, 'then reject' transformation
 interpreted as 'then reject = -1'
keepx the x-variables stored, default: xvar- variables and
 output variables of xtran transformations
cdat the names of c- files, necessary unless 'xform m' is in effect
cvar the names of c-variables in the c- files, must include ns
ctran transformations of c-variables
keepc the c-variables stored, default: cvar- variables and
 output variables of ctran transformations
cform format for reading cdat files, default: same as xform
save the data are saved in JLP format on disk
const constants used in transformations

28 Part 2 User's Guide

JLP reads the data using following logic:

Reading data

 If keepx command was not given put all xvar variables into keepx list.

 If keepc command was not given put all cvar variables into keepc list.

 do ifi=1, (number of xdat files)

 Open ifith cdat file.

 Open ifith xdat file.

 V(ivdata) = ifi ! ivdata is the number of variable 'data'

 Make dtran transformations.

 iunit=0

 do until end-of-file in cdat file

 iunit=iunit+1

 Read cvar variables of the unit iunit from the cdat file.

 V(ivunit)= iunit

 Make ctran transformations.

 Store keepc variables in cmat matrix.

 If there is not enough space in xmat matrix, write first

 units in xmat in the save or scratch file.

 do is = 1, V(ivns)! V(ivns) = number of schedules

 Read xvar variables from the xdat file.

 V(ivs)=is ! ivs is # of the variable 's'

 V(ivrej)=0 ! ivrej is # of the variable 'reject'

 Make xtran transformations.

 Store keepx variables in xmat matrix.

 end of loop over schedules

 end of loop over units

 end of loop over files

 If save command was given, save data in JLP format.

When the data need to be modified later, then basically the same loops are executed but
instead of reading data from cdat and xdat files, data are obtained from cmat- and
xmat- matrices (and possibly from a working file, if data are too large for xmat).

Modification commands

dtran transformations made when data files change
xtran transformations of x-variables
ctran transformations of c-variables

 JLP 29

const constants used in transformations
dupl transformations defining how to duplicate schedules
split what variables are split if splitting of units is indicated in xtran
transformations
save/later the data are saved in JLP format after modifications

If xtran, ctran, or dupl transformations are given, then JLP executes the following
modification loops when make or problem command is met:

Transforming data

 do ifi=1, (number of xdat files)

 V(ivdata) = ifi ! ivdata is the number of variable 'data'

 Make dtran transformations.

 do iunit=1, (number of units in the xdat file)

 Get old keepc variables of unit from cmat matrix into V-vector

 V(ivunit)= iunit ! variable 'unit' is the within file unit #

 Make ctran transformations.

 Store old keepc variables and new output variables in cmat

 If unit is stored in working file, read one record (which

 contains one or more units) into xmat matrix

 Make space for new x-variables

 do is = 1, (number of schedules)

 Get keepx variables from the xmat matrix.

 V(ivs)=is ! ivs is # of the variable 's'

 V(ivdupl)=0 ! ivdupl is # of variable 'duplicate'

 If 'reject' was not in keepxl then V(ivrej)=0

 Make dupl transformations

 ndupl=V(ivdupl) ! get number of duplicates

 do i=0, ndupl

 V(ivdupl)=i

 Make xtran transformations.

 Store keepx variables

 If V(ivsplit)>0 store nesessary information
 ! ivsplit is # of variable 'split'

 end of loop over duplicates

 end of loop over schedules

 If unit was split, sort schedules

 If schedules were duplicated, update number of schedules

30 User's Guide Part 2
 end of loop over units

 end of loop over files
 If any unit was split, generate new units by duplicating rows of cmat and
 by updating unit related lists

 If save/later command was given, save data in JLP format.

2.5.2 Data variables

This section describes handling of data variables, i.e., constants, d-, c-, and x-variables.
Constants, d-variables and c-variables can be used to define domains for constraints.
Constants and d-variables can be used as parameters in ctran-, and xtran
transformations, and c-variables can be used as parameters in xtran transformations.

All data variables are referred using symbolic names. All variable names are stored in
the same vector. When JLP reads and transforms data, all current values of different
variable levels are put to the same vector. This makes it possible that transformations of
a given level of variables can use variables at the higher levels.

Variable names must start with a letter A-Z or a-z (not with 'ÄÅÖäöå') and cannot
contain characters !"=*,/:-%. Variable names are case sensitive. For instance, name
'a#$.1' is a valid variable name. The system manager can decide the maximum length
of variable names (see Chapter 4.1, 32 characters is the default).

Variables are referred using variable lists. Variable lists are formed by separating
variable names with commas. A variable list with consecutive variable names can be
formed, e.g., as follows:

xvar income.1,-income.3,volume != income.1,income.2,income.3,volume
const a,-d=2*1,2,3 ! a,b,c,d =1,1,2,3

Note that ',–' construction is interpreted using variable names and not the order of
variables (compare to transformation loops described in section 2.5.3). For instance, if
xvar command is:

 xvar income.1,volume.1,income.2

then row

 income.1,-income.2

in a problem paragraph is equivalent to:

 income.1,income.2

The following variables are automatically created:

data = the number of data file to be read in (d-variable)
unit = the number of calculation unit (c-variable)

 JLP 31

s = the number of the treatment schedule (x-variable)

Variables duplicate, split, and reject have also predefined meanings, as will
be explained later in this chapter and in the variables section of the reference manual.

Constants

Constants are created and given values using constant command, or are created by
xdat command. For instance

constant harvestcost,logprice,private = 100,230, 2

creates three new variables (if they do not already exist) and gives values to these
constants. These constants can then be used as parameters in transformations or
domain specifications when defining the linear programming problem. For instance:

xtran
income.1=volume.1*(logprice-harvestcost) ! income during first period
/
problem
owner=private:
income.1 > 1000
...

We can use standard transformations defined in an include file and load current
parameters from a second include file.

Command xdat creates automatically constants from the file names. For instance,
command

xdat south.xda,north.xda

creates constants 'south' and 'north' with values 1 and 2. If data file names start with
a digit then letter 'd' is prepended to the name (e.g. constant 'd21' is created from file
name 21.dat). If the data file name is not a valid variable name, (e.g. it contains
characters '%/:'), then no error occurs but the file names cannot be used as constants in
transformations or domain specifications. Note that the directory specification for x-
data or c-data files can be given using path command.

D-variables

D-variables (variables describing data sets) get new values when the data file changes.
A d-variable 'data' gets automatically the number of the data file, and other d-variables
are defined by dtran transformations. In dtran transformations all constants can be
used as input variables. With d-variables one can create parameters for ctran- or xtran-
transformations or define domains. For instance, assume that xdat command is

xdat south.xda,north.xda,east.xda

32 Part 2 User's Guide

Then we can define transformations and domains as:

dtran
if data=south then logprice=200
if data=north then logprice=150
if data=east then logprice=180
/
problem
data=south & owner=private:
income.1,-income.4 > 2000
...

If data are stored in the JLP-format then dtran transformations are written
automatically to the '.sav' file. When the saved data are used later, the original division
into different data files remains (from user's point of view).

C-variables

C-variables (class variables) get new values when the treatment unit changes. C-
variables are read from cdat files or made by ctran transformations. Command cvar
tells what are the c-variables in the cdat file, and format is given by cform command.
Constants and d-variables can be used in ctran transformations. A c-variable 'unit'
gets automatically the number of the treatment unit within the cdat file (i.e. for the
first unit of a new file, variable 'unit' gets again value one). With c-variables one can
create parameters for xtran transformations or define domains. C-variables need to
include variable with name 'ns' which tells the number of treatment schedules for each
unit. For instance:

cform *
cdat south.cda,north.cda,east.cda
cvar ns,owner,distance
ctran
logging_cost=a*distance + b ! a and b are defined with dtran or const
/
problem
owner=private:
logging_cost min
...

The format of c-variables data needs to be one of the following types:

cform * ! FORTRAN free format
cform b ! the data are in binary sequential file(s)
cform (10f5.2) ! FORTRAN format, all data are read in as real variables

If the format of c-data is the same as the format of x-data, then cform command is not
necessary. Use of input subroutines written by the system manager is indicated by
'xform m' command and no cform command is needed in that case either.

The directory for the files can be given by path command. Commands cdat, cvar,
ctran and cform can be given at any order before the data are read in by read
command or at first problem command.

 JLP 33

By default all cvar variables and output variables of the ctran transformations are
stored in memory and in '.cdj' file if data are saved in the JLP-format. If some of these
variables are not used in later problem definitions and there is a shortage of memory,
then you can define what variables are stored using keepc command. For instance:

cvar ns,c1,-c100
keepc ns,c6,-c10

X-variables

X-variables get new values when the treatment schedule changes. X-variables are read
from xdat files or made by xtran transformations. Command xvar tells what are the x-
variables in the xdat file. Constants, d-variables and c-variables can be used in xtran
transformations. An x-variable 's' gets automatically the number of the treatment
schedule within the treatment unit. X-variables are used to define constraints and the
objective function for the linear programming problem. Treatment schedules can be
rejected using special 'reject' variable. If you have 'reject' among the xvar
variables then all schedules with negative value of 'reject' are rejected. Schedules can
also be rejected using xtran transformations:

xtran
if unit.eq.1.and.s.eq.3 then reject
if herbicides>0 then reject
/

In the above transformations reject is in fact interpreted as 'reject=-1'. If variable
reject is read from the data, then its values can be changed in xtran
transformations. Rejected schedules remain in the data, and they can be accepted again
with new xtran transformations by giving value 0 to variable reject . For instance,
no schedules will be rejected after the following xtran paragraph:

xtran
reject=0
/

The format of x-variables data needs to be one of the following types:

xform * ! FORTRAN free format
xform b ! the data are in binary sequantial file
xform (10f5.2) ! FORTRAN format, all data are read in as real variables
xform m ! use input functions defined by the system manager

If xform is 'm', then there need not be cdat or cform commands.

The directory for the files can be given by path command. Commands xdat, xvar,
xtran and xform can be given in any order before the data are read in by read
command or at first problem command.

34 Part 2 User's Guide

By default all xvar variables and output variables of the xtran transformations are
stored in memory and in '.xdj' file if data are saved in the JLP-format. If some of these
variables are not used in later problem definitions and there is shortage of memory,
then you can define what variables are stored using keepx command before the data
are read. For instance:

xvar x1,-x100
keepx x1,x6,-x20

Selecting the type of a data variable

Functionally equivalent results can be often obtained by defining a variable as a
constant, d-variable, c-variable or x-variable. For instance, assume that xtran
transformations include:

income=price*volume

If the same price applies everywhere, then the variable 'income' will get the same
values if variable 'price' is given a value within const command or within dtran,
ctran or xtran transformations. But with const the value of 'price' is given only
once while using xtran, for instance, JLP creates a vector having as many elements as
there are treatment schedules, and each element has the same value. In large problems
it is useful to keep variables at the highest possible level, or at least above the x-variable
level.

It is possible that a variable with a given name belongs to two or more variable levels
simultaneously (e.g. the variable is both among cvar and xvar variables). However,
this will probably cause trouble if it is not carefully taken into account how different
variables get their values (see section 2.5.1).

2.5.3 Transformations

New variables can be created with transformations. The same transformation compiler
is used for dtran-, ctran- and xtran transformations and to interpret domain
specifications in problem definitions. Compiled transformations are fast to compute.

Dtran transformations (transformations defined after dtran command) are computed
when the data file changes. Ctran transformations are computed when the treatment
unit changes. Xtran transformations are computed as the treatment schedule changes.
Transformations should (if their use can be anticipated) be defined before the data are
read in at the first problem command or using read command. When data are read in,
then ctran- and xtran transformation definitions are cleared (not dtran
transformations). One can later define new transformations, and these new

 JLP 35

transformations will be computed automatically when the next problem command is
encountered or when computation is explicitly required with make command (both
read and make are optional commands). The syntax of transformations is similar to
the FORTRAN syntax except that all functions must be written in lower case. For
instance:

x5=sin(x2**2+sqrt(log(x4-2)))
if (x3+x2=4 .or. sin(x3)>0.5) then ! outer parentheses are not necessary
x7=x5-7
else
x4=x3**2.2+tan(x5)
end if

Transformations are defined in dtran, ctran, and xtran paragraphs. If there are old
transformations (i.e. an xtran paragraph, for instance, is given for second time before
the transformations are actually computed), then new transformations are appended to
the old ones. One can clear all previous compiled transformations at any time by
entering 'transformation' clear. Ctran and xtran transformations already computed
and stored in the memory cannot be withdrawn. All previously defined dtran
transformations can be cleared. When defining new transformations, existing variables
can be used as output variables (the old values will be replaced). Examples:

xtran
x1=0
/
prob ! after this we cannot recover what x1 was earlier

If we had noticed before the prob command that we were accidentally zeroing 'x1'
we could prevented this:

xtran
clear
/
prob ! x1 is what it used to be

Arithmetic operations

Standard **,*,/,+, and - operations are available. In addition there is an additional "–
operation for raising a variable to an integer power (internally all data variables are
REAL*4). For instance, (-1)"2=1 but (-1)**2 is undefined. Integer powers, when
applicable are faster to compute and are defined for negative arguments. The hierarchy
of operators is: ",**,*,/,-,+.

 Supported FORTRAN intrinsic functions

abs(x) = absolute value of x

atan(x) = arctangent, result is in radians

cos(x) = cosine, x in radians

36 User's Guide Part 2
cosd(x) = cosine, x in degrees

exp(x) = exponential

int(x) = truncation to integer

log(x) = natural logarithm

log10 = log base 10

max(x1,...,xn) = largest value of x1,...,xn

min(x1,...,xn) = smallest value of x1,...,xn

mod(x1,x2) = remainder of x1/x2

sin(x) = sine, x in radians

sind(x) = sine, x in degrees

sqrt(x) = square root

tan(x) = tangent, x in radians

tanh(x) = hyperbolic tangent

Additional functions
ran(x) = uniform random number between 0 and 1, with seed x

 based on RAN1-algorithm of Press et al. (1986,p. 196)

x1=swap(x2) = change values of x1 and x2

Own functions

As described in Chapter 4.7, the system manager can create transformations that can be
used in the same way as the predefined functions. The following function is included as
an example of a 'user defined function':

npv(interest_percent,income1,time1,...,incomen,timen) = net present value

Logical operators

Following logical operators are implemented (below equivalent operators):

.gt. .lt. .ge. .le. .eq. .ne. .and. .or. .not.

 > < >= <= = &

Constant �

In transformations one can use � with name '.pi':

atd=90*atan(x)/.pi ! arctangent in degrees

If ... then structures

Examples:

 JLP 37
if unit=1 then cost=cost+1 ! one-line if, this is equivalent to:
if (unit.eq.1) then cost=cost+1

if data=south.or..not.(sitetype<3) then
cost=2
price=4
end if

if data=south then
cost=2
else
cost=2.7
end if

if data=south then cost=3
np=npv(3,100,0,200,3) ! this is computed always
then price=2 ! the previous test remains valid
diff=income.2-income.1 ! there can be transformation between
else price=3

Note that unlike in FORTRAN, 'then' is necessary also in one-line if statement. No
nested if...then structures are allowed. After one if...then statement, the test remains in
effect and can be used in one-line 'then' or 'else' statements. No error will occur if
'if...then...(else)' structure is not closed with 'end if', all statements after 'then' belong
also in that case to the range of 'if...then'.

Loops

Transformations can contain simple loops. Examples:
out=0 ! initialize out
%5:out=out+%x1 !out= x1+x2+x3+x4+x5
%4:%z1=%x1 + %y1 !z1=x1+y2; z2=x2+y2
out2=0
%3:out2=out2+x1"% !out2=x1+x1"2+x1"3
out3=0
%3,2:out3=out3+%x1 +% !out3=x1+1+x3+2+x5+3
%3: ! loop can contain several lines
tmp=%x1/% ! tmp=x1/1 ; tmp=x2/2 ; tmp=x3/3
%z1=tmp*%y1 ! z1= tmp+y1 ;z2= tmp
%end

Loops begin with '%n' where n tell how many times the loop is done. Character '%' in
front of a variable tells that the variable number is incremented at each iteration. The
default increment is one. If the loop begins '%n,i' then the increment is i. Within
transformations variable '%' gets values 1,2,..,n (even if the increment i is greater than 1,
%-variable is incremented by steps of one). The variable numbers are incremented
without a reference to names of variables. Consecutive new variables are created by
const, xvar and cvar commands, and by dtran, ctran and xtran transformations.
For instance, let xvar command and xtran transformations be:

xvar x1,y1,x2,y2
xtran
out=0
%3:out=%x1
/

38 Part 2 User's Guide

Then variable out gets value x1+y1+x2. One cannot create new variables within a
loop. New consecutive variables can be created using const command:

const out1,-out4
xtran
%4:%out1=%x1+%z1
/

If variables out1,-out4 did not exist and were not created with const, then only
variable out1 will be created properly.

If a %-loop of several statements is initialized and not closed properly, then everything
after the beginning of the loop is computed once (i.e. the loop is ignored), and no error
occurs.

2.5.4 Saving data in JLP format

Data can be stored in a special JLP-format. If the x-variables data exceed the memory
reserved, the initial part of the x-data is stored automatically in this format. The data
are saved if one uses the following command:

save filename

The exact effect of the save command depends where the command is given. If the
data are not yet read in, data are saved later at the time when the data are read at
problem or read commands. If the data have been already read in, then the data are
saved immediately. This makes a difference in case x-data exceed the memory. If save
command is not given before reading data, then a part of x-data (treatment schedules)
are written twice, first to a scratch file when reading data, and then to a named file
when saving data. New variables created during the session can also be saved with
save command. If new variables have been already created, then saving is done
immediately, in other case at the same time as new variables are created with problem
or make commands. Even if there are unsaved variables, the saving can be postponed
to the next time new variables are created by giving command in form:

save/later filename

When the data are stored, three files are created. A binary file filename.xdj contains the
x-data. Another binary file filename.cdj contains the c-data (variables describing
treatment units). A text (ASCII) file filename.sav contains const-, xdat-, keepx–,
keepc-, dtran- and unsave commands that are needed to read in data stored in
JLP-format. The file contains also the history of the file as comments. The saved data
can be read with command:

include filename.sav

 JLP 39

The following example with the data used in section 2.3.1 shows that significant
savings in computer time can be obtained with saving data in JLP -format.
jlp>incl ex.in/*save:*
> *save
> xdat savo.xdb
...
> time
starting timing..
> read ! data can be read in with read command, this is not necessary
reading xdat-file: savo.xdb
reading cdat-file: savo.cda
number of calculation units, schedules: 433 12100
...
> time
elapsed: 27.00000 total: 27.00000
> save savo !saves data with JLP -format
**definitions saved in file: savo.sav
 c-data saved in file: savo.cdj
 x-data saved in file: savo.xdj
> init !get a fresh start
> time
elapsed: 6.617187 total: 33.61718
> incl savo.sav ! this will read in saved data
> ** saved data:*
> xform b
...
> ;# of units in files 433
> ;total number of schedules: 12100
> ;number of rejected schedules: 0
> unsave savo.cdj savo.xdj
> time
elapsed: 5.349609 total: 38.96679
jlp>

With save command the data are written to binary files with a special record structure
(see section saveform in the reference manual). Data can be written to disk with a
simple record structure similar to the structure of xdat and cdat input files using
write command. This is needed, e.g., when transferring data in ASCII files to a
different computer system.

2.6 Problem Definition

LP-problems are defined in problem paragraph. One problem paragraph may specify
several RHS's, and which problem is actually solved depends on the solve command.
A problem paragraph consists of sections:

domain1: ... domainn:
constraint (or objective)
...
constraint (or objective)

Each domain in a domain specification line applies to all x-variables in the following
constraints.

40 Part 2 User's Guide

2.6.1 Domains

If the domain consists of all treatment units, then the domain specification is given as:

all:

If this is the first domain in the problem paragraph, the domain specification can be
omitted.

An ordinary domain specification is given by a logical statement determining when the
domain applies. The transformation compiler interprets a domain specification in form:

if (domain specification) then (domain applies)

In the domain specification one can use constants, d-variables and c-variables as well as
arithmetic operations, for instance:

data=south.and.(owner=private.or.sin(elevation)+altitude.gt.10) :
(unit>2.and.unit.le.237).or.sitetype=wasteland :

Note that the colon ':' is used to indicate the end of a domain definition. A domain can
consist even of a single treatment unit only. See section 2.7.2 for printing domains, i.e.,
domains that are used to classify units only in the printing of an LP solution.

2.6.2 Constraints

The form of a (utility) constraint line is either:

x-variable_list range_1 / range_2 /
 or
coef1*var1+coef2*var2 + ..coefn*varn. range_1 / range_2 /

Examples:

income.1,-income.5 = 10000 />800 <1500 / >750
-y1+income.2 + 1.6*S1-S2 - 1.28*L1+L2 = 0 ! income.2 only is an x-variable

The x-variable list in the first alternative may contain several x-variables. Variables in
the second alternative may be x-variables and z-variables, i.e. nonnegative variables
that are needed to define a linear programming problem. If the coefficient is one, it can
be omitted. Z-variables are always global, i.e., they do not relate to domains. If domain
specific z-variables are needed, they should be created explicitly. For instance, if in a
goal programming problem there are target levels for both savo and karelia, then the
problem paragraph should contain separate slack and surplus variables for both
domains:

prob
data=savo:
income.1 -savosurplus.1 + savoslack.1 = 800000

 JLP 41
....
data=karelia:
income.1 -kareliasurplus.1 + kareliaslack.1 = 600000
...
/

RHS Range

A specification for a RHS range is some of the following types:

= 100
>100
<200
>100 <200
<200 >100 ! equivalent to the previous one, no special order for '>' and '<'

The RHS's to be used when the problem is solved are selected with solve command
described in section 2.7.1.

Chapter 4.8 describes how the system manager can develop own methods for
generating RHS's. These methods can use the range specifications given in problem
paragraph as parameters.

2.6.3 Objective

The objective function and the type of the problem is given as follows:

coef1*variable1+coef2*variable2 + ... max

 or
coef1*variable1+coef2*variable2 + ... min

If there were several domain specifications in the previous domain specification line,
the first domain applies. For instance:

problem
all: data=south: data=north
incomed.1,-incomed.5=0
presentvalue max
/

Now the domain for the objective variable is 'all:'

The objective row can be anywhere in the problem paragraph and it can belong to any
domain. It is not necessary to have objective row at all. If no objective function is given,
JLP just finds a feasible solution when it is asked to solve the problem (it is possible to
ask JLP to find a feasible solution even if objective function is included)

2.6.4 Using different domains on the same row

It is assumed that the x-variables on an objective or constraint row are all in the same
domain. For instance, if it is required that variable volume.1 should be equal in Savo

42 Part 2 User's Guide

and Karelia, then this constraint can be expressed as follows using extra z-variables to
define global domain specific x-variables:

data=Savo:
savovolume.1-volume.1=0 ! this defines volume.1 in Savo as a global
 ! z- variable
data=Karelia:
kareliavolume.1-volume.1=0
savovolume.1-kareliavolume.1=0 ! this constraint can be after any domain
! specification as it contains only global z-variables

2.7 Solution

2.7.1 Selecting the problem to be solved

JLP starts solving a problem when it gets command solve. If several RHS's are given
in the problem paragraph, then the appropriate RHS can be selected as follows:

solve ! Solves the problem corresponding to first right-hand side.
solve 3 ! Solves the problem corresponding to third right-hand side.
 ! If for a constraint the are not 3 RHS's, the last one is used.
 ! If no constraint contains 3 RHS's, return to read new commands.
solve +1 ! Solves the problem corresponding to the next right-hand side.
 ! The RHS counter must be initilized with 'solve' or e.g. 'solve 5'

If the number of ranges in a constraint line is less than the number of column given in
the solve command, then the last range is used. If no constraint line has enough
ranges, no problem is solved.

If the system manager has written an own subroutine to generate RHS's (see Chapter
4.8), this subroutine is called when solve command is given with an option starting
with 'm'. For instance:

solve/myown 3

If no objective function was given in the problem paragraph, solve will find a
feasible solution. JLP will find only a feasible solution even if the objective function was
included, if solve command is replaced with feasible command. The syntax for
feasible command is the same as for solve.

Timing comparisons are meaningful only if solve is given with option /i that forces
JLP not to use the previous solution as the starting point.

2.7.2 Printing options

This section describes JLP commands controlling how the solution is printed. An
interpretation of the shadow price and marginal cost variables printed is in the next

 JLP 43

section (2.7.3), a mathematical description is given in Chapter 6.4. Chapter 4.10
describes how the system manager can write an own report writer.

Printing rows and x-variables

After solving a problem, JLP prints the solution (if printlevel>0). Values of rows
and z-variables are always printed. User can determine with show command what else
is printed. The same solution can be printed with different show options using recall
command. The format of the show command is as follows:

show(options) variable_list

The most important options are (see Reference Manual for more details, and how to
negate the following options):
/nox ! print no x-variables
/noxfirst ! print no x-variables automatically after solution,
 ! print x-variables information only with recall command
 ! as specified with other show options
/all ! print all x-variables (default)
/prob ! print variables used in problem
/cost ! compute cost of decrease and cost of increase for x-variables
 (default)
/nocost ! costs are not computed
/int ! compute the integer approximation
/domains ! start paragraph that defines domains that are used when
 computing x-variables (in addition to domains used in the problem)
/nodom ! do not use extra printing domains

The computation of cost of decrease and cost of increase of x-variables may take quite a
lot of time. As a rough approximation the time used to compute the values of x-
variables and costs is

(number of x-variables)*(number of domains)
number of rounds through units in optimization x (optimization time)

 The main part of time is spent in computing costs (this part of the software is new,
currently it is not well optimized and tested). The user may wish that this information
is not computed. The purpose of /noxf option is to allow the user first look the rows of
the solution, and then get a more detailed output with recall if the solution is
interesting.

The integer approximation is computed so that only the schedule with largest weight is
applied in each unit. No integer optimization is done, and the integer approximation
does not generally satisfy the constraints.

The optional variable list in the show command tells what variables are printed in
addition to the variables appearing in the problem.

44 Part 2 User's Guide

Section 2.3.4 contains an example of the use of show both with /dom option and
variable list. Another example:

show/nodom/dom !/nodom clears previous domains /dom tells that new ones follow
owner=private: ! remember colon
owner=public & site = wilderness:
/

Reprinting the last solution with other options

JLP prints the solution automatically after solving the problem using the current show
options except if /noxf option is in effect. If the show options are changed, or if the
printing parameters have changed, or if the user just wants to see the results again, the
solution can be printed again with recall command. If /noxf option is in effect, then
the current show options are used for the first time at recall.

Printing weights and shadow prices of schedules

After solving a problem, information about weights and shadow prices (marginal
values) of schedules can be printed using sched command. This command has the
following options:

sched ! print all basic schedules (schedules used in the solution)
sched n ! print at most n schedules
sched/all ! print also values of nonbasic schedules
sched/all n ! print at most n schedules
sched/all>95 ! print all schedules whose shadow price > 95% from the
 ! value of the basic schedules of the unit
sched/all>95 n ! print at most n schedules

Example:
jlp>sched 100
value% of unit: % is from sum of unit values 33459072.9

 unit value% sched % sched %
 1 0.217174 8 100.0000
 2 0.208857 4 100.0000
 3 0.015557 2 100.0000
...
 82 0.187835 40 100.0000
 83 0.262362 21 58.80239 27 41.19760
 84 0.176998 16 100.0000
 85 0.074584 4 100.0000
 86 0.198073 3 100.0000
 87 0.162058 17 100.0000
 88 0.153418 2 67.96054 3 32.03945
 89 0.112786 1 100.0000

The unit and sched columns tell the unit number and schedule numbers for basic
schedules. The '%' column is the weight of the schedule multiplied by 100. There can be
several basic schedules in a unit. The value% column tells how many per cents is the
shadow price of the unit from the sum of shadow prices of all units. Thus the value%

 JLP 45

column adds up to 100. The shadow price of unit 1 in the example is
0.00217174*33459072.9 = 72664.4.

The printing format is different with the sched/all option:
jlp>sched/all>99.5 150
 unit sched value% of s share% value% of unit
 1 8 100.0000 100.0000 0.217174
 2 4 100.0000 100.0000 0.208857
...
 6 2 100.0000 100.0000 0.068647
 7 1 100.0000 100.0000 0.026881
 8 2 99.92227 0.011231
 8 4 100.0000 100.0000
 9 1 100.0000 100.0000 0.184652
...
 83 12 99.55764 0.262362
 83 21 100.0000 58.80239
 83 27 100.0000 41.19760

This option prints all schedules on separate lines. The share% column is the weight of
the schedule multiplied by 100 (= % column in the first format). The column 'value%
of unit' tells how many % is the shadow price of the unit from the sum of shadow
prices of all units (= value% column of the previous format). Column 'value% of s'
tells how many percent the shadow price of the schedule is from the shadow price of
the unit. This is at least as great as the specified printing limit. For all basic schedules
this figure is 100. For rejected schedules, the 'value% of s' may be over 100. For
instance, let us solve the same problem as above after transformation:
> xtran
> if unit=2.and.s=4 then reject ! this was a basic schedule above
> /

We will then get a slightly different solution and:
jlp>sched/all>99.5 80
value% of unit: % is from sum of unit values 33458479.3

 unit sched value% of s share% value% of unit
 1 8 100.0000 100.0000 0.217178
 2 3 100.0000 100.0000 0.207087
 2 4 100.8566 rejected
 3 2 100.0000 100.0000 0.015557

2.7.3 Marginal analysis of the solution

The dual problem of an LP problem can be used to analyze marginal changes of the
objective function caused by slight modifications of the original problem. Chapter 6.4
describes in more detail the mathematical basis of the marginal (dual) analysis of the
problems solved by JLP. This section indicates how to interpret the marginal price
information JLP computes.

A marginal change of the objective function has the following meaning. Assume that a
constant in a problem has value �, and the objective function has the value z0. If z0+ is

46 Part 2 User's Guide

the value of the objective function when the problem is solved replacing constant with
a new value �+���then (z0–z0+)/��is the�marginal change in the objective function. In
linear programming, (z0–z0+)/� is independent of � provided that � is so small that the
current basis does not change. The marginal changes of the objective function may be
called, depending on the context, marginal prices, or shadow prices, or reduced costs.
In forest management planning problems where both the number of treatment units
and the number of simulated schedules are relatively large, and the schedules follow
the same logic of forest growth, the marginal prices may change quite little even if the
basis will change.

Shadow price of a utility constraint

The shadow price of a constraint is the marginal change of the objective function when
the RHS of the constraint is increasing. The effect of decreasing the constraint is the
opposite. JLP prints automatically the shadow prices of the utility constraints. The
shadow prices are for the lower or upper bound depending which one is active
(character 'L' or 'U' indicates this in the printed solution). Note that for an equality
constraint (lower bound and upper bound are equal), either the lower or the upper
bound is active. The following table shows how the sign of the shadow price (�) is
determined:

active bound
 the objective function is
 maximized minimized

lower bound ��������� ���������

upper bound ��������� ���������

no active bound ��������� ���������

The signs can be heuristically inferred as follows. If the lower bound is active, then
increasing the lower bound will make the constraint more restrictive, and the objective
function will become worse, i.e., smaller for maximization and greater for
minimization.

The shadow price of the objective row is set to be one. This is in accordance with the
equivalent problem formulation where the objective is always to maximize 0 subject
to the constraint that

 z

 z0 – (the initial objective row) = 0.

The shadow price of this constraint would always be one.

 JLP 47

Shadow price of an x-variable

The shadow price of an x-variable xk is the shadow price of the constraint (1.3) or (1.10)
that defines xk as a sum over schedules. A natural way to interpret the shadow price of
an x-variable is that it is the marginal utility of a unit of the x-variable obtained from
other sources and used for satisfying the constraints of the problem. Alternatively,
marginal change in xk may result from a marginal change in a coefficient of a basic
schedule j in unit i.

xk
ij

The shadow price � of k xk can be expressed in terms of the shadow prices of the utility
constraints as follows (see Chapter 6.4):

� k � a0k � atk
t�1

r

� �t (2.1)

where a is the coefficient of tk xk on row t and � t is the shadow price of constraint t.

Note that if xk is present only on one row t and with coefficient one (e.g. the constraint
is like: final_volume > 1000), then

� k � ��t , (2.2)

i.e., the marginal changes in the objective function are opposite if we get an extra unit of
quantity k from outside or if we require that the treatment units produce one unit more.
If does not have a nonzero coefficient in any binding utility constraint, its shadow
price is zero (which is not printed).

 xk

When interpreting the shadow prices of x-variables, it should be kept in mind that
effect of an extra unit of xk obtained from another source is taken into account only
through the explicit constraints and objective function. No implicit meaning or
implications are taken into account. For instance, in the example in section 2.3.1, the net
present value variable npv.0 was maximized subject to smoothness constraints for
incomes:
> prob
> income.2-income.1>0
> income.3-income.2>0
> income.4-income.3>0
> income.5-income.4>0
> npv.0 max
> /

48 Part 2 User's Guide

The shadow prices of incomes were:
 x-variable shadow
 price

 income.1 -0.2052712
 income.2 -0.0094556
 income.3 0.12518680
 income.4 0.04850047
 income.5 0.04103964

This does not really mean that keeping the problem unchanged, the net present value
would decrease if we will get more income during first period. But the problem
formulation did not express the direct effect of income to present value. Extra income
during first period would be just used in constraints, and in this case extra unit of
income.1 would make the constraints more difficult to satisfy. But we can change the
objective function to take into account the direct relation between income and present
value (3% interest rate, 10 year subperiods, incomes in the middle of subperiods,
income variables are per year incomes):

> prob
...
> 0.228107*npv.5 + 2.644386*income.5 + 3.55383*income.4 + >
> 4.7760557*income.3 + 6.4186195*income.2 + 8.6260878*income.1 max
> /

Note that 0.228107=1/1.0350, 2.644386= 10/1.0345 , etc. If JLP solves this problem, the
same solution is obtained but, the shadow prices will be (shadow prices are divided by
10 to transform the per year scale of incomes to absolute scale) :
 x-variable shadow
 price/10

 income.1 . . . 0.842081784
 income.2 . . . 0.640916123
 income.3 . . . 0.490124112
 income.4 . . . 0.360233488
 income.5 . . . 0.268542446

Thus 1 mark of income after 5 years will increase npv.0 by 0.842 marks. Price 8.42 is
smaller than the coefficient 8.63 of income.1 in the definitions of npv.0. This is in
accordance with the fact that the shadow price of income.1 in the first formulation
was negative.

The shadow prices of incomes can further be converted into interest rates as follows
(see e.g. Lappi and Siitonen 1985). Let �t be the shadow price of income at time t, and
let rt=�t/�t+1, then the internal rate of interest, it, between t and t+1 is it � rt �1 . The
internal rates of interest computed from the above shadow prices are:

1/ d

 i01 � 3.5%, i12 � 2.8%, i23 � 2.7%, i34 � 3.1%, i45 � 3.0%

 JLP 49

The information obtained with the second objective function can be computed from
results obtained for the first objective function. These relations will not be developed
further here. The purpose of the above example of the analysis of shadow prices is to
emphasize that the solution of a linear programming problem can be properly
interpreted only if the basic properties of linear programming are understood.

Cost of decrease or increase of an x-variable

The optimal solution provides weights w that can be used to compute the value of an
aggregated x-variable xk as

ij

xk � xk
ijwij

j�1

ni

�
i�1

m

� .
 (2.3)

The options of show command determine what x-variables are computed. Let �k denote
the value thus obtained. If we add a constraint that requires that xk should have a value
different from �k. the objective function will generally change (even if the shadow price
of xk would be zero).

The cost of decrease tells how many units the objective function will change if xk is
required to decrease by one unit, and the cost of increase tells how many units the
objective function will change if xk is required to increase by one unit. The costs are
expressed as positive values, so for a maximization problem, the cost is marginal
decrease and for a minimization problem, a marginal increase in the objective function.

It may be that when a constraint is added that requires that xk deviates from the
observed value �k, the resulting problem is infeasible. The corresponding cost can then
be defined to be infine. Thus the 'INF' printout of JLP can be interpreted either as
'infinite' or 'infeasible'. If the objective row in a maximization problem consists of a single
x-variable, the cost of increase for that variable is automatically infinite.

For a basic x-variable xk (i.e., xk appears in a binding constraint or on the objective
row) the cost of decrease or increase is mathematically related to the shadow price of
the variable but it is equal to the shadow price only in special cases (generally only
when xk appears alone on one row). The cost of changing the value of xk and the
shadow price of xk are based on different concepts of 'changing the problem slightly'.
In the former analysis a constraint is added, and the latter analysis a constraint is
modified. The cost of changing the value of a nonbasic x-variable may be easier to
interpret than the cost of changing the value of a basic x-variable. For a basic x-variable,
the interactions of the additional constraint with the original constraints may not be
self–evident.

50 Part 2 User's Guide

Reduced cost of a nonbasic z-variable

The reduced cost of a nonbasic z-variable tells how many units the objective function
will change if the z-variable is forced to increase by one unit (from zero). These costs are
always printed (if printing is allowed at all).

Shadow price of a treatment unit

The shadow price � i of the area constraint (1.4) or (1.11) for unit i is called the shadow
price of the treatment unit i. If the area of unit i would increase by �%, then the change
in the objective function would be �� i 100 . The increase of the area by �% means that
the coefficients for all x-variables k and for all schedules j in unit i are increased by
�%. Marginal changes in the nonbasic schedules do not really have effect on the
optimal value of the objective function, but it is easier to think that all schedules are
changed.

xk
ij

The analysis of the dual problem reveals that the value of the objective function is:

z0 =�� i
i�1

m
� ct

*

t�1

r

� �t , (2.4)

where ct
* is the active bound (either ct or Ct).

Thus the shadow prices of the units do not generally add up to the solution. If the
shadow price of a unit is negative in a maximization problem or positive in a
minimization problem (and the unit is so small that the marginal analysis is valid), then
a better solution would be obtained without the unit (thus the unit should be
immediately sold to someone who does not understand linear programming).

The shadow price of a treatment unit is equal to the shadow price of any of the basic
schedules in the unit.

Shadow price of a treatment schedule

The shadow price of a schedule is not really a shadow price of a constraint in the
problem. The shadow price � ij of schedule j in unit i is here defined as:

� ij � � k
k�1

p

� xk
ij (2.5)

For all basic schedules � ij is equal to � i , the shadow price of unit i. For a nonbasic
schedule j, the difference � i � �ij is the marginal (reduced) cost of forcing schedule j
into the solution. For a minimization problem, the cost computed as � ij � �i would

 JLP 51

express the cost as a nonnegative quantity (costs are assumed here to be always
positive)

2.7.4 Input parameters of the optimization

There are some parameters that determine how the optimization is done. The current
values can be seen with parin command. Thereafter new values can be given in format
'parameter=value', and parin paragraph is ended with '/'. For instance:

jlp>parin
 start_mode 0.0000 0=norm 1=cont old 2=ffeas
 start_unit 0.0000
 maxvisit 0.0000
 invert 100.0 after given # of changes of basis
 trace1 0.0000 step # to start
 trace2 0.0000 step # to stop
 tole 1.000 coefficient for tolerances
 wmin 0.0000 = 0 change basis as you can , else =1
parin>invert=200
parin>/
jlp>

The user may wish to modify following parameters (other parameters are needed in
tests). Note that if the effect of different options on the optimization time is studied,
then solve command should be given in form solve/i so that optimization starts
always from equal situation (otherwise the key schedules of the previous problem are
used as the starting point).

invert

The basis matrix is reinverted after invert changes in the basis. Default for invert is
100. A reinversion of the basis takes time but it will remove rounding errors
accumulated during the stepwise changes of the basis. After finding a solution, JLP
inverts the basis if the basis has changed more often than 10% of the value of invert.

wmin

If wmin=0, then JLP enters a variable into basis even if its value will become zero (i.e.
the variable will be a degenerate basic variable). If wmin=1 , then variables with value
zero are not entered. Changing the value of wmin may help if there are problems in the
optimization (see Chapter 5.3)

tole

JLP tries to figure out what is the range of rounding errors. If the estimated tolerance is
too small, JLP may get into trouble in computations. If the estimated tolerance is too

52 Part 2 User's Guide

large, JLP may fail to reach the solution (the obtained solution is anyhow reasonable,
but not necessarily optimal). The tolerances estimated by JLP are multiplied by
parameter tole. This way the estimates can be corrected, if JLP runs into trouble or if
the user feels that JLP does not find the optimum. See Chapter 5.3 for more
information.

2.7.5 Output parameters of the optimization

JLP collects information about different steps of the optimization. The summary
statistics can be seen with parout command. For instance:

jlp>parout
 nonfeasible constraint 0.
 unit last visited 69.
 rounds through units 15.
 improvements in units 1839.
 changes of key schedule 988.
 w enters 1005.
 slack/surplus enters 192.
 z enters 0.
 w leaves 993.
 slack/surplus leaves 204.
 z leaves 0.
 basis changes 1197.
 changes after reinversion 0.
 reinversions of the basis 12.

 JLP 53

3. REFERENCE MANUAL (FILE jlp.hlp)

The up to date reference manual is stored in file jlp.hlp which is also used by the on-line
help. With help command, JLP lists all lines starting with '*'. With 'help key '
command, JLP lists the entry between '*key' and ';'. Changes made after the printing of
this manual will be indicated by '##' in file jlp.hlp.

Current modules are:

*batch *buff *buflevel *cdata *cform *command line *constants *ctran *cvar *dir *do
*domain *dtran *duplicate *end *end do (enddo) *feasible *files *help *helpfile
*include *init *integer approximation *keepc *keepx *list *make *mela *mrep *outfile
*outlevel *ownread *own1 *own2 *parin *parout *path *pause *printlevel *problem
*read *recall *reject *report *save *saveform *schedules *show *solve *split *system
*time *title *transformations *unsave *values *variables *write *xdata *xform *xtran
*xvar

The current help file is listed below:

** file jlp.hlp ***

 (SYS.DEP) = the property is system dependent (see Part 4 for details)

 (not cmd) = the keyword is not a JLP command
;

*batch - JLP is running in batch mode.

Use as first command in batch mode. In batch mode, the run is terminated with

fatal errors, and prompts are not printed when reading commands.
;

*buff - (SYS.DEP.) Calls user written interface subroutine 'buff'.

'Buff' can be used to make an interface that sends commands to JLP and reads

and interprets the results. The subroutine template provided with JLP just

prints the output buffer (controlled by 'buflevel') and reads commands from

the terminal.

see also: buflevel, ownr, Chapter 4.11
;

*buflevel -(SYS.DEP.) Gives the amount of output send to the output buffer.

Usage: bufl i ! i= 0, 1, 2,.... Larger values of i indicates more output to

the internal output buffer:

0 = no output (default)
1 = only solution and problem definition
2 - 8 more and more output

54 Reference Manual Part 3
Use only if your own routines have the full control. If buflevel is given

negative value, then the subroutine 'ownwri' is called for each line to be

printed. A template for 'ownwri' is given in file 'jlpint.src'. Currently the

optimization algorithm prints information about how the optimization proceeds

only to the terminal.

see also: printlevel, outfile, outlevel
;

*cdata - Defines the names of the c-data files.

Usage: cdata file1,...,filen

It is recommended that names of text (ASCII) files end with ".cda", and names

of binary files end with '.cdb'. (Files saved in the JLP-format end with

'.cdj'.) During reading, JLP adds the directory specification given by 'path'

command to the names. If 'xform m' is in effect, then the user subroutines may

or may not utilize the names in cdat command (SYS.DEP.).

see also: cform, cvar, xdata, xform, save, path
;

*cform - Defines the format of the c-data.

Usage: cform form ! where

form = * if c-data can be read with FORTRAN '*' format
 b if c-data are in binary files
 (8f10.0) any FORTRAN format

If cform is not given, JLP assumes that cform is the same as xform. All

variables given in 'cvar' are read with one FORTRAN read statement. If xform

is 'm' then cform is also assumed to be 'm' (i.e. cform command is not used to

determine what subroutines JLP calls, it can be used to carry information to

data access subroutines (SYS.DEP.)).

see also: cdata, cvar, xform
;

*command line (not cmd) - Syntax of a command line.

A command line can contain spaces and tabs. The 'command' in a command line is

the initial nonblank part of the line. Commands must be in lower case. If the

last character of a line is '>' then the logical command line continues to

the next physical line (record). Commands can be read from terminal (or input

stream in batch mode) or from files using 'include' command. Command line

starting with '*', '!', or ';' are comments, and the rest of line following

'!' is also a comment. If a file or a part of file is included using 'list'

command, then all lines are treated as comments. Names of commands are checked

as long as the name is uniquely determined (usually four characters are

significant). The rest of the command name is ignored. In options (e.g.

'/all') usually only the first character is significant, except for the

negations '/nooptio' where usually three characters are significant (i.e.

'no'+ the option character). The '/' options must follow command name without

 JLP 55
a space. If the significant part of a name is longer than usually, it is

indicated in this help file. A paragraph is section of command lines starting

with a command and ending with '/' (e.g. problem paragraphs and transformation

paragraphs). Note: 'show' command starts a paragraph only with '/dom' option.

see also: include, list, help
;

*constants - Gives values for (constant) variables.

Usage: variable_list= value_list ! These constants can then be used in

transformations. Example:

const price1,-price4=2,2*3.1,4

If dtran-, ctran-, or xtran- transformations calculate sums over data files,

units or schedules, initial values (usually zeros), can be given with 'const'

command (or using appropriate 'if ... then var=0' transformation). Current

values of constants (or any variables) can be seen with 'values' command. Xdat

creates automatically constants from the file names given in 'xdat' command.

see also: values, variables, xdat
;

*ctran - Starts paragraph defining transformations made for c-variables.

Ctran-transformations are made in order to get variables that can be used as

parameters in xtran-transformations or to define domains in problem

definitions. The default is that all output variables are stored. If not all

output variables need to be stored, then variables stored when data are read

in are given in 'keepc' command, and output variables to be stored in later

transformations should be given in 'make' command.

Examples:

ctran
if distance.gt. 200 then
 harvestcost=2
else
 harvestcost=1.5
end if
/

see also: transformations, xtran, make, keepc
;

*cvar - Defines c-variables that are read from cdat files.

Usage: cvar variable_list ! Cvar list must include at least 'ns' which tells

the number of schedules in each file. The default is that all cvar-variables

are stored in cmat matrix. If only a subset needs to be stored, the stored

variables are given with 'keepc' command.

Example:
cvar c1,-c6,ns

see also: keepc, xvar, variables
;

*dir (not cmd) - How to define directory for input data?

Directory of data files can be given with 'path'

56 Reference Manual Part 3
see also: path, files
;

*do - Starts a loop.

A loop ends with 'end do' or 'enddo'.

Usage:

do n
 (commands)
end do !or enddo

Example:

solve ! The RHS counter must be initialized before using 'solve +1'.
do 10
solve +1 ! If there are not enough RHS's, iteration terminates
 ! without error.
end do
;

*domain (not cmd) - Subset of units used in problem or report.

A domain is a subset of units that can be defined with d- and c-variables.

Domains can be used in 'problem' paragraph or in 'show/domain' paragraph.

Examples:

data=Savo & owner=private:
unit=23:
all:

see also: problem, show, variables
;

*dtran - Starts a paragraph defining transformations made for d-variables.

Usage:

dtran
(transformations)
/

Dtran-transformations are made in order to get variables that can be used as

parameters in ctran- or xtran-transformations or to define domains in problem

definition. When data are read in, dtran-transformations are made always as

JLP starts reading new cdat- and xdat- files. In later transformations, JLP

remembers the original file sturucture, and dtran-transformations are made

when first unit of a cdat- and xdat- file is in turn. Dtran-transformations

remain in effect also when using data saved in JLP format. The automatically

created 'data' variable can be used in transformations.

Examples:

dtran
if data=NorthKarelia then harvestcost=2
else harvestcost=1.5
/

If you have given xdat-command 'xdat north.xda, south.xda' you can make dtran-

transformations as:

if data=south then ...

Output variables of dtran-transformations are not stored anywhere, they are

just computed again when needed, and new transformations are appended to

 JLP 57
previous ones. All dtran transformations can be cleared (unlike computed ctran

or xtran transformations) as follows:

dtran
clear

/

see also: xtran, transformations, variables, xdat, save
;

*duplicate - Defines transformations describing duplication of schedules.

Usage:

dupl
(transformations)
/

If dupl- transformations determine a nonzero value for variable 'duplicate' in

a schedule, then JLP makes that many NEW copies of the schedule. The total

number of copies will thus be duplicate+1. Thereafter JLP makes xtran-

transformations for each copy. Before computing xtran-transformations, JLP

assigns the number of the copy (starting from zero) to the variable

'duplicate'.

Example:

dupl ! duplicate all schedules with clearcutting during first period
if clearcut.1.gt.0 then duplicate=1
/
xtran ! separate manual and harvester clearcuttings
if clearcut.1.gt.0 .and. duplicate=1 then
manpower=10*cutvolume.1
harvestertime= 2.5*cutvolume.1
else
manpower=70*cutvolume.1
harvestertime=0
end if
/

Thereafter there can be problems with constraints for manpower and

harvestertime even if original data did not separate the two harvest method.
;

*end - (SYS.DEP.) Return to the main program.

The standard main program prints the output buffer, and stops. In user JLP-

implementation 'end' can be used to get the control to interface level.
;

*end do or enddo - End of the do loop

see also: do
;

*feasible - Finds a feasible solution.

The syntax for selecting RHS is the same as for 'solve'. If the solution is

thereafter asked with 'solve' command, JLP starts directly from the feasible

solution. If no objective was defined in 'problem' paragraph, JLP finds a

feasible solution also with 'solve' command.

see also: problem, solve
;

58 Reference Manual Part 3
*files (not cmd) (SYS.DEP.) - Opening of old or new files.

The way new files are created is determined by $LIST and $VERSIONS options in

file jlp.par. The $LIST option determines the carriage control keyword used

when opening output ASCII files. If $VERSIONS option is set, then JLP adds a

'_(nro)' -version number when opening a new file with the same name as an

existing file. $READONLY option specifies an possible nonstandard keyword

when opening existing files for reading. See file jlp.par for more details.
;

*help - How to get on-line-help?

Usage: help ! List '*' lines in this help file.

 help keyword ! List the help module for keyword. Keywords that are not

commands are followed by (not cmd). A keyword must be written so far that it

can be uniquely determined (first match is always printed). Modules or

features that are dependent on the implementation of JLP are indicated by

(SYS.DEP.). The system manager should edit these modules. If the significant

part of the command is longer than 4 characters, it is indicated.

Current commands (significant part underlined):

 batch buff buflevel cdata cform
 const ctran cvar do dtran
 dupl end enddo feasible help
 helpfile include init keepc keepx
 make mrep outfile outlevel own1
 own2 ownread parin parout path
 pause printlevel problem read recall
 report save sched show solve
 split system time title unsave
 values write xdata xform xtran
 xvar

(SYS.DEP.): own1 and own2 are replaced by commands given in jlp.par.

help is equivalent to: list/all jlp.hlp/*
help key is equivalent to list jlp.hlp/*key:;

see also: helpfile, command line, list
;

*helpfile - Changes the help file.

Usage: helpf file !(5 characters required: 'helpf') New helpfile is 'file'.

The default is jlp.hlp. Command 'helpf' without file makes jlp.hlp the current

help file. The help file contains cells starting with '*keyword' and ending

with ';'. The user can freely edit the help file.

see also: help
;

*include - The command interpreter will read commands from a file.

Usage:

include filename ! The whole file is included
incl file/addr1:addr2 ! The first line included starts with addr1
 ! and the last line included starts with addr2.
incl file/addr ! Only the line starting with addr is included.

 JLP 59
incl/all file/addr1:addr2 ! All matching sections are included.
incl/a file/addr ! All lines starting with addr are included.
incl ?opt.sav ?opt.def ! If file 'optdat.sav exists then include it.
 ! If it doesn't, include opt.def.

Include-files (including list-files) can be nested to 6 levels.

see also: list
;

*init - Gets a fresh start.
;

*integer approximation (not cmd)

If '/integer' option of the 'show' command is in effect, JLP computes the

values of x-variables resulting when for each unit only the schedule with

largest weight is applied.

see: show, recall
;

*keepc - Defines c-variables to be stored in memory when reading data.

Usage: keepc variable_list ! (5 characters significant: 'keepc').

When data are read in, the default is that all cvar-variables (variables read

from cdat-files) and output variables of ctran-transformations are saved in

the memory. If only a subset of those variables are needed, give them with

keepc-command. See 'make' for storing output variables of ctran-

transformations defined after reading data.

see also: cvar, make, variables
;

*keepx - Defines x-variables to be stored in memory when reading data.

Usage: keepx variable_list ! (5 characters significant: 'keepx')

When the data are read in, the default is that all xvar-variables (variables

read from xdat-files) and output variables of xtran-transformations are saved

in the memory. If only a subset of those variables are needed, give them with

keepx-command. See 'make' for storing output variables of xtran-

transformations defined after reading data.

see also: xvar, make, variables.
;

*list - Lists files or parts of them.

List will be used exactly as include-command except all lines are treated as

comments.

Usage:

list filename ! The whole file is listed
list file/addr1:addr2 ! The first line listed starts with addr1
 ! and the last line listed starts with addr2.
list file/addr ! Only the line starting with addr is listed.
list/all file/addr1:addr2 ! All matching sections are listed.
list/a file/addr ! All lines starting with addr are listed.

Short headers of source files (e.g. jlpsub.src etc.) can be listed as follows:

list/all jlpsub.src/*=:**

Longer headers can be listed:

60 Reference Manual Part 3
list/all jlpsub.src/*=:***

The short header of a named module (e.g. 'ilfind') can be listed:

list jlpsub.src/*=ilfind:**

On line help is implemented using 'list' command.

see also: include, help
;

*make - Makes new variables when data are already read in.

Usage:
make ! Make all defined new variables.

make variable_list ! Make only variable_list variables.

New variables are defined in ctran- or xtran-transformations. The default is

that the output variables of transformations defined after reading data are

stored, except special x-variables 'split' and 'duplicate'. If no

variable_list is given, all new output variables are stored. Variable_list

should contain both c- and x-variables that are needed later. If all new

variables are stored, then 'make' is not necessary: new variables are

automatically created at 'problem' or 'solve' commands.

see also: dtran, ctran, xtran, keepc, keepx, save
;

*mela (not cmd) - MELA/ JLP relation.

For JLP, Mela is an implementation of the special data format 'xform m', and

report generator implemented behind command 'mrep' or option 'show/mrep'

command. For more information, consult Markku Siitonen, The Finnish Forest

Research Institute.
;

*mrep (SYS.DEP.) - Calls user's own special report writer.

If JMAKE option $MREP in jlp.par is in effect, JLP calls subroutine 'mrep'. If

option 'show/mrep' is in effect, then report is always generated with this

generator instead of the standard report writer. For JLP, user report

generators 'report' and 'mrep' work exactly in the same way. It is intended

that 'report' could be a general report writer and 'mrep' a report writer

associated with 'xform m'.

see also: show, recall, solve, report
;

*outfile (SYS.DEP.) - Opens (or closes) a file for additional output.

Usage: outfile File ! Open output file 'File'

 outfile ! Close the current output file.

Depending on the $VERSIONS option in file jlp.par, file may be opened with

version number added to the name. Option:

outf/s ! (SYS.DEP.) Additional output is written to unit NUOUT defined in

jlp.par without opening the file first. It is assumed that the file is/will be

opened by the operating system or the main program.

 JLP 61
see also: outlevel, printlevel, write, files
;

*outlevel - Amount of output to be written to outfile.

Usage: outlevel i ! where i is:

0 = no output to outfile (default)
1 = only solution and problem definition
2 - 8 = more and more output

The outlevel-parameter works exactly as printlevel-parameter, except currently

the optimization algorithm prints information about how the optimization

proceeds only to the terminal (controlled by 'printlevel').

see also: outfile, printlevel, buflevel, buff
;

*ownread (SYS.DEP.) - Replaces terminal input with an own subroutine.

When JLP would normally read commands from input terminal, it will instead

call the user subroutine ownrea. Input from include files is not affected.

This may be useful when building an own interface.

see also: buff, buflevel
;

*own1 (SYS.DEP.) - Executes a user defined command.

When getting a command with a name given in $OWN1 option in jlp.par, JLP will

call user subroutine own1 that may do something useful.

see also: own2
;

*own2 (SYS.DEP.) - Executes another user defined command.

Command name is given in $OWN2, and subroutine own2 is called.

see also: own1
;

*parin - Lists and defines input parameters of optimization.

JLP lists first current parameters. Thereafter JLP expects a paragraph

defining new values for input parameters of the LP-algorithm. User may wish to

change the 'invert' parameter that tells how often the basis is reinverted.

Other parameters are of interest when there are difficulties in the

optimization.

Examples:

parin
invert=200 ! reinvert the basis after 200 changes.
/

parin
/ ! List only parameters, '/' ending the paragraph is necessary.

see also: parout
;

*parout - Lists output parameters of the JLP optimization algorithm.

The output parameters are related only to the technical details of the

optimization.

see also: parin

62 Part 3 Reference Manual
;

*path - Defines directory for input data files.

Usage: path directory ! Directory is added to cdat-, xdat-, and unsave-

file names. Note that command line

path <inventory.dat>

means that the command line continues to the next line. The command line ends

where it is intended if '!' is put to the end of line:

path <inventory.dat> !

If JMAKE option $READONLY is properly defined in jlp.par, the directory can

belong to another user who has granted reading rights (SYS.DEP.)

see also: xdat, cdat, unsave
;

*pause - Pause until <ret>.

May be useful for following the program flow when commands are read from

include files. Has no effect in batch mode.

see also: batch
;

*printlevel - Determines the amount of printed terminal output.

Usage: printl i ! i= 0 or 1 or 2 or Larger values of i indicates more

output:

0 = no output
1 = only solution and problem definition
2 - 8 more and more output

see also: outlevel, outfile, buflevel
;

*problem ! Starts problem definition paragraph.

Examples:

problem
x1>0 / > 110 />200 />300 ! defines several lower bounds
x2>0 / >120 <200 ! both upper and lower bound
x3+2*x1-x3 >0 / >130 ! linear combination of x-variables
zvar-2*x3=0 ! zvar is a z-variable
x4=0 / =140
x5>0 / >150
x6-x2 max ! objective row, max or min
pml=1: pml=2: !defines domains for the following constraints
x1,-x3, x5 =0 /=100 ! the constraint can be defined for a variable list
/ ! End of problem definition.

The domain specifications can be made using constants, d- and/or c-variables.

There can be any number of domain specifications, domains need not be

hierarchical. Either object variable or constraints may be missing. If there

is no object variable, JLP just finds a feasible solution with 'solve'. The

objective row can be anywhere. If the problem is solved with 'solve/m', then

the user subroutine 'next' is used to compute actual RHS (SYS.DEP.). NOTE:

After reading a problem paragraph, JLP computes the smallest and largest

possible value for each row. Thus 'problem' can be used to compute the range

of x-variables without solving the problem.

 JLP 63
see also: solve, feasible, variables
;

*read ! Reads data.

JLP reads data automatically at 'problem' command if data are not yet ready.

Before reading data you must give xdat-,xvar-, cdat-, cvar- commands, and

ctran- and xtran- transformations, if needed.

see also: keepc, keepx
;

*recall - Prints again the last solution.

If you have made new variables and/or you have used commands 'printlevel',

'outlevel', 'buflevel' or 'show' then you will get more or less output than

when you solved the problem. If option 'show/noxf' is in effect, the other

options of 'show' are used only with 'recall'.

see also: printl, outl, bufl, show
;

*reject (not cmd) - Rejecting schedules in the optimization.

Example:

xtran
if unit.eq.2.and.s.eq.3 then reject ! Reject schedule 3 in unit 2.
if herbicide>0 then reject ! Reject schedules using herbicides.
/

Rejected schedules are ignored in the optimization, they are not deleted from

the data. Rejection of schedules is implemented with a special variable

'reject' which gets value -1 for rejected schedules and value 0 for accepted

schedules. If schedules are rejected for the first time during the session,

the default is that all schedules are accepted. If schedules have been

rejected earlier during the session, and later xtran-transformations define

rejections, then the schedules rejected earlier remain rejected unless the new

xtran-transformations specify the acceptance explicitly by giving value 0 for

the variable 'reject'. Example:

xtran
reject=0 ! Cancel earlier rejections.
if biocontrol>0 then reject ! Reject schedules with biological weed control.
/

It is possible define constraint that a variable needs to be always e.g. zero

using a constraint in the problem paragraph, e.g.:

problem
herbicide=0
...

Rejection with 'reject' is computationally more efficient.
;

*report ! (SYS.DEP.) Calls own general report writer.

Calls subroutine 'repo' provided by the system manager. If option 'show/repo'

is in effect, then report is always generated with this generator.

see also: mrep
;

64 Reference Manual Part 3
*save - Saves the data in JLP format.

Usage: save File ! If file is not given, JLP uses name:'jlpsave'. If there

are unsaved data, then data are saved immediately. If the data are not yet

read in or are already saved, then saving is done when reading the data or

creating new variables.

Options:

save/later ! If there are unsaved data, the saving is done after the next

transformations. This may be useful when the data exceed the memory reserved

so that JLP knows to write the data directly into a named file instead of a

scratch file.

Save makes 3 files:
file.xdj = x-data file
file.cdj = c-data file
file.sav = the text file containing data definitions.

The saved data and all definitions can be read in using: 'include file.sav'

see also: write, saveform
;

*saveform (not cmd) - The JLP format of saved files.

The file file.sav contains const-,xdat-, keepx-, keepc-, dtran- and unsave-

commands that are needed to read in data stored in JLP-format. The file

contains also the history of the file as comments.

The first record of file.cdj is:

ml, nht,maxrec,nfiles,(mll(i),i=1,nfiles) ,

where

ml = the total number of units
nht = the total number of real*4 variables in xdata
maxrec = all records in file.xdj and file.cdj contain less than
 maxrec numbers (4 bytes each)
nfiles = number of xdat and cdat files used to make save-files.
 saved files still differentiate original xdat- and cdat files
mll(1)...mll(nfiles)= number of units in each original file

The next records contain all saved c-variables. The first variable in each

record is integer*4 variable telling the length of the rest of the record

(i.e. read()n, (cmat(j), j=iprev+1,iprev+n)). JLP packs cdata in as large

record as the MAXREC parameter in jlp.par allows, but when reading the data no

special structure is assumed except that variables of each unit are in order

given by keepc-command.

Each records of file.xdj contains first the number of xmat-numbers stored in

the record. A record contains only complete units. JLP packs as many units as

MAXREC allows into one record, but on input records can contain less units.
;

*schedules - Prints weights and shadow prices of schedules and units.

Can be used after solving a problem. The command has the following options:

sched ! Print all basic schedules (schedules used in the solution).
sched n ! Print at most n schedules.
sched/all ! Print also shadow prices of nonbasic schedules.

 JLP 65
sched/all n ! Print at most n schedules (basic + nonbasic).
sched/all>95 ! Print all schedules whose shadow price > 95% from the
 ! value of the basic schedules of the unit
sched/a>95 n ! Print at most n such schedules

The system manager may put these printings under 'mrep' or 'repo' (SYS.DEP.).
 ;

*show - How the x-variables are printed after solving a problem.

Usage: show(/options) (variable_list)

Options:

 /nox ! Print no x-variables.
 /noxfirst ! Print no x-variables automatically after solution,
 ! print x-variables information only with recall command
 ! using current show options
 ! Significant part of the option is nonstandard: /noxf
 /xfirst ! Negate the /noxf option.
 /all ! Print for each domain all x-variables (default).
 /prob ! Print for each domain all x-variables used in problem
 /notwice ! Do not print x-variable if it is on a constraint
 row alone (i.e. without z-variables or other x-variables,
 and thus the value can be seen from output for rows).
 /twice ! Print also duplicate information (default).
 /cost ! Print cost of decrease and increase for x-variables (default).
 ! Computation of costs may take much time.
 /nocost ! Costs are not computed.
 /inte ! Print for x-variables the integer approximation obtained by
 using in each unit the schedules with largest weight.
 /nointe ! Do not print the integer approximation (default).
 /domain ! Start paragraph that defines domains that are used when
 computing x-variables (in addition to domains used in the
 problem). The domains are added to the domains given
 with earlier /domain definitions. The previous domains
 are first cleared if /nodom is also used (i.e. /nodom/dom).
 Domains are defined in the same way as in problem paragraph
 (remember ':' at the end), but only one definition per
 line is allowed.
 /nodom ! Do not use extra printing domains.
 /repo ! (SYS.DEP.) Use report generator 'repo'.
 /norepo ! Do not use report generator 'repo' (default).
 /mrep ! (SYS.DEP.) Use report generator 'mrep'.
 /nomrep ! Do not use report generator 'mrep' (default).

show varlist ! print for each domain all x-variables in problem + varlist-

variables.

New 'show' options will be in effect in the next 'solve' or 'recall' command.

Several options can be in the same 'show' command (e.g. show/repo/mrep/pro).

If the standard report writer is bypassed (i.e. '/repo' or '/mrep' or both are

in effect), then other options (except '/twice') determine what quantities are

available in user report generator.

see also: recall, mrep, report, solve
;

*solve - Solves an LP-problem.

Usage:

solve ! Solves the problem corresponding to first right-hand side.
solve 3 ! Solves the problem corresponding to third right-hand side.
 ! If for a constraint there are not 3 RHS's, the last one is used.
 ! If no constraint contains 3 RHS's, return to read new commands.
solve +1 ! Solves the problem corresponding to the next right-hand side,
 ! useful in do-loops.
solve +3 ! Solves the problem with RHS: previous + 3

66 Reference Manual Part 3
options:

solve/i ! Initializes the vector of key schedules, useful if
 ! you compare the solution times using different options
solve/m(text) ! (SYS.DEP.) generate RHS with user subroutine 'next'

After solving the problem, the solution is automatically printed with the

current options of 'show' command (unless 'show/noxf' is in effect). The

solution can be reprinted with 'recall'. Schedules information can be printed

with 'sched'.

see also: problem, show, do, recall, report, mrep, sched, feasible
;

*split - Splitting a unit into parts.

A unit can be split into parts that inherit different schedules. How units are

split is determined in xtran-transformations with variable 'split'.

Example:
xtran
if unit.eq.10.and. s.ge.3.and.s.lt.7 then split=1.25
if unit.eq.10.and.s.ge.7 then split=2.40
oldunit=unit ! Old unit numbers can be saved this way.
olds=s ! Old schedule numbers can be saved this way.
/

Now schedules 3-6 are put to part 1 that is 25% of the original unit.

Schedules 7- are put to part 2 that is 40% of the original unit. The

unspecified schedules 1 and 2 remain in the original unit (part=0), and their

share is 100-25-40%= 35%. It is required that the variable 'split' gets

consecutive values 1,2,.., and that not all schedules are put to these parts

so that some schedules are left to the original unit (part=0). The default is

that all x-variables stored in xmat matrix are multiplied with the

corresponding share proportion. If only part of x-variables should be split

among parts (e.g. a x-variable like 'harvestmethod' should remain unchanged),

then the variables that should be multiplied with the share can be determined

with command:

split variable_list

Alternatively, the variables that are NOT multiplied with the share can be

given with command:

split/no variable_list

see also: xtran, duplicate
;

*system (SYS.DEP.) - Sends a command to system level.

Usage: system command ! Executes the one-line FORTRAN statement given in JMAKE

option $SYSTEM in file jlp.par. The example given in jlp.par can be used to

send command to the system level in VAX-VMS (e.g.: 'syst dir' will print the

current VAX directory).
 ;

*time (SYS.DEP.) Measures time.

 JLP 67
If $SECNDS option in jlp.par is in effect, 'time' prints the time from the

first time-command and from the previous time-command. If $CPU option in

jlp.par is also in effect, the cpu- time is also printed. The time for solving

a problem and doing the after-solution computations is automatically printed.
;

*title - Defines title used when printing results.

Usage: title text

Note that you can get text into output file by entering comments.

User report writer can use the title for any purpose (SYS.DEP.).
;

*transformations (not cmd)

The syntax of transformations is basically the standard FORTRAN syntax.

For instance:

x5=sin(x2**2+sqrt(ln(x4-2)))
if x3+x2=4 .or. sin(x3)>0.5 then ! parentheses are not necessary
x7=x5-7
else
x4=x3**2.2+tan(x5)
end if ! if ... then can not be nested

Arithmetic operations and functions:

" = raise to integer power (-1)"2=1 | ** = raise to real power

abs = absolute value | atan = arctan

cos = cosine of radians | cosd = cosine of degrees

exp = exp | int = integer part

log = natural logarithm | log10 = log base 10

mod(x1,x2) = remainder mod x2 | ran(x1)= random with seed x1

sin = sinus (angle in radians) | sind = sinus, angle in degrees

sqrt = square root | tan = tangent, angle in rad

tanh = tanh | x1=swap(x2) = change x1 and x2

max(x1,x2,x4)= maximum | min(x1,2,x4)= minimum

Logical functions:

.gt. .lt. .ge. .le. .eq. .ne. .and. .or. .not.

 > < >= <= = &

Current 'own' functions:

npv(interest_percent,income1,time1,...,incomen,timen) = net present value

see manual for %-loops and special uses of 'then' and 'else'
;

*unsave - Gets data from saved JLP files (not generally needed).

Usage: unsave cdat xdat

If JLP has saved data in JLP format at 'save' command, then JLP automatically

creates the correct 'unsave' command into the '.sav'-file.

User is not expected to give this command explicitly, implicitly this command

is implied by: 'include file.sav'.

68 Reference Manual Part 3
see also: save, path
;

*values - Prints current values of variables.

Usage: values variable_list

Variable_list may contain d-, c- and x-variables and constants. For d-, c- and

x-variables the value is for the last xdat-file, for the last unit, and for

the last schedule, respectively. This command can be used to see the current

values of constants, or to print the results if transformations are used to

compute summary information over files, units, or schedules.

see also: constant, dtran, ctran, xtran
;

*variables (not cmd) - Description of data variables.

Data variables are constants, d-variables, c-variables or x-variables.

Constants, d-, c-, and x-variables differ in the way how they get their values

and how they can be used. Constants are given values by 'constant' command or

are created by xdat-command (e.g. 'xdat south.xda, north.xda' creates

constants 'south' and 'north' with values 1 and 2). D-variables get new values

when the data file changes. A d-variable 'data' gets automatically the number

of the data file, and other d-variables are defined by 'dtran'-

transformations. C-variables (class variables) are read or made by 'ctran'-

transformations for each calculation unit, and x-variables are read or made by

'xtran'-transformations for each treatment schedule. When data are read in or

when making transformations, all variables are put in the same vector so that

transformations can access variables from different levels. You should not use

the same names for constants, d-, c- and x-variables. JLP does not check

this. Constants, d-variables and c-variables can be used to define domains for

constraints or domains for printed results (see 'show/dom'). Constants and d-

variables can be used as parameters in 'ctran'-, and 'xtran'-transformations,

and c-variables can be used as parameters in 'xtran'-transformations. C-

variables need to include variable with name 'ns' which tells the number of

treatment schedules for each unit. Variable names must start with a letter A-Z

or a-z (not with 'ÄÅÖäöå') and cannot contain characters '!"=*/:%-' (allowed

characters include e.g. '#' and '.'). A list of variables is formed by

separating variable names with commas. A list (sublist) of several variables

with consecutive variable names can given with a ',-' construction:

var1,-var125,costa,-costx

The predefined variables are:

data = the number of data file to be read in (d-variable)

unit = the number of calculation unit (c-variable)
ns = number of schedules in unit (c-variable)
s = the number of the schedule (x-variable)
duplicate = x-variable used to duplicate schedules (see: duplicate)
split = x-variable used to split units into part (see: split)

 JLP 69
reject = x-variable having value -1 for rejected schedules (0 otherwise)

see also: cdat, cvar, ctran, xdat, xvar, dtran, constant
;

*write - Writes the current xmat and cmat-matrices.

Usage:

write file ! Writes xmat to binary file file.xdb and cmat to
 binary file file.cdb
write/* file ! Write xmat to file file.xda and cmat to file
 file.cda with free format
write/(8f8.0) file ! writes xmat and cmat to files file.xda and file.cda
 using FORTRAN format

Stored c-variables of one unit are written with one write-statement (i.e. into

one record unless implied otherwise by the format), and stored x-variables of

each schedule are written with one write statement. Names of written variables

are printed (to terminal/outfile/buffer).

The current data can be saved also with this 'write' command, but the user

needs to give the proper commands for reading the data again (compare with

'save')

see also: values, save
;

*xdata - Gives the names of x-data files.

Usage: xdata file1,...,filen

It is recommended that names of text files end with '.xda', names of binary

files end with '.xdb'. Files saved in JLP format end with '.xdj'. Directory

specification given by 'path' command is automatically added to the name.

Constants with names file1,...,filen (exluding extension) are created and

given values 1,...,n. JLP keeps track of original file structure with variable

'data'. Thus transformations may contain 'if data=file1 then' statements and

domain specifications contain 'data=file1' parts.

If xform = 'm', then the user subroutines may interpret names file1,...

without a connection to physical files (SYS.DEP.).

also: xform, xvar, cdata, save, cvar, path
;

*xform - Defines the format for reading xdat files.

Usage: xform form ! where

form = * if xdat files can be read with FORTRAN '*' format
 b if x-data are in binary files
 (8f10.0) any FORTRAN format
 m data are read with user subroutines:
 minit, mgetc, mgetx, mfinit (SYS.DEP.)

All variables given in 'xvar' are read with one FORTRAN read statement.

see also: cform, write
;

*xtran - Defines transformations made for x-variables.

Xtran-transformations are made in order to get variables that can be used in

problem definitions. For each schedule, the values of constants, d-, and c-

70 Reference Manual Part 3
variables can be used. The default is that all output variables are stored

(except 'split' and 'duplicate'). If not all output variables should be

stored, then variables stored when data are read in are given in 'keepx'

command, and output variables to be stored in later transformations should be

given in 'make' command. Xtran- transformations are computed into the xmat-

matrix, and they cannot be cancelled.

Examples:

xtran
cost=harvestcost*harvestvolume
/

If linear transformations are needed in LP-problems, they can be specified

either in xtran transformation or written explicitly in problem paragraph.

E.g. the following two problems are equivalent:
1)
 xtran
 diff.1=income.2-income.1
 /
 prob
 diff.1>0
 ...
 /

2)
 prob
 income.2-income.1>0
 ...
 /

If same linear transformations are used in several problems, it is more

efficient to do them just once in xtran transformations. On the other hand, if

linear transformations are written explicitly in 'problem' paragraph, JLP can

compute the shadow prices of the element x-variables ('income.2' and

'income.1' in the above example).

Xtran-transformations are used for splitting a unit into parts (see 'split'),

and for rejecting schedules in optimization (see 'reject').

see also: transform, keepx, ctran, make, split, duplicate, problem
;

*xvar - Defines x-variables to be read in.

Usage: xvar variable_list

The default is that all xvar-variables are stored. If only a subset needs to

be stored, the stored variables are given with 'keepx' command.

Example:

xvar income.1,-income.6,volume.1,-volume.6

If variable with name 'reject' is among xvar-variables, it is interpreted to

indicate schedules that are rejected. Value -1 means that the schedule is

rejected and value 0 that it is not rejected. The values of 'reject' can later

be changed with xtran transformations.

see also: keepx, cvar, variables, xtran, reject
;

 JLP 71
** end of file jlp.hlp ***

72 Part 4 Setting Up the Working Environment

4. SETTING UP THE WORKING ENVIRONMENT

This part describes how the system manager (called here 'user') can build an executable
program from the source files provided and install JLP into a larger management
planning system.

4.1 Building JLP

4.1.1 Compiling and linking JLP (file readme.jlp)

File readme.jlp contains information what files are included, and how to set up the
working environment using JMAKE precompiler. File readme.jlp will be updated to
correspond changes made after the printing of this manual. Current content of
readme.jlp:

********************** File readme.jlp:
This file includes general information about:

A. Files included in the JLP-package

and how to:

B. Compile and link JMAKE
C. Make own interface subroutines
D. Modify file jlp.par
E. Run JMAKE
F. Compile and link JLP
G. Test JLP
and
H. Revisions of JLP after June 1, 1992.

A. Files included in the JLP-package
====================================

The following files are included in JLP-package (on DOS or Macintosh
diskettes, file names are always in lower case):

1: readme.jlp - this file

2: jmake.f - source for the JMAKE precompiler

3: jlp.par - file containing system options and data parameters

4: jlp.hlp - help file for on-line help and reference

 JLP source files

5: jlp.src - file containing main program and interface subroutine
6: jlp2.src - subroutines accessing common data areas
7: jlpsub.src - general subroutines
8: jlpopt.src - optimization subroutines
9: jlpint.src - templates for interface subroutines

 Test files:

10: test.in - commands for a test run, use:"include test.in"

 JLP 73
11: test.xda - x-data for test
12: test.cda - c-data for test
13: test.out - output from the test run

B. Compiling and linking JMAKE
==============================

1) Edit in the first program line of the file jmake.f the values of parameters
n5 and n6 according to the system defaults:

* n5= unit for terminal input
* n6= unit for terminal output
 parameter (n5=5,n6=6)

2) Change the extension ".f" of the file jmake.f if it is more convenient in
your system.

3) Compile jmake.f

4) Link jmake

C. Make your own interface subroutines
=====================================

File jlpint.src contains templates for interface subroutines. If user specific
interface subroutines are needed, then the user should make own versions of
the subroutines into a different file.

D. Modify file jlp.par
======================

Edit the file jlp.par, and save it with a different name if you want to keep
original jlp.par unchanged. The file jlp.par contains information about the
system specific features and size parameters for declaring variables and
vectors of JLP. File jlp.par contains three types of parameters. Parameter
lines starting with "$$" give general information for the JMAKE precompiler.
Lines starting with "$" tell how certain system dependent features can be
included in the programs. Other noncomment lines (lines starting with "*" are
comments) are parameters for defining FORTRAN parameters, variables and
vectors.

E. Run JMAKE
============

Run then program JMAKE that creates final source files (with file name
extension given with parameter "$$EXT"in jlp.par). If the default directory
already contains a file with the corresponding name, JMAKE asks if the file
should be replaced. If answer "Y" is given, then JMAKE tries to write the new
final source file, and an error occurs in some systems (e.g. OS/2), or the old
file is just replaced (e.g. in Macintosh), or the new file will be the newest
version of the file (e.g. in VAX/VMS).

JMAKE creates files (assuming that $EXT -parameter in file jlp.par is F):
jlp.f
jlp2.f
jlpsub.f
jlpopt.f
jlpint.f - if not removed from $FILES statement in jlp.par.
+ other files specified in $FILES statement in jlp.par.

F. Compile and link JLP
=======================

Compile program files created by JMAKE and other files not precompiled with
JMAKE.

Link. If you have written your own main program, that file must linked before
the object file resulting from jlp.src. The interface subroutines replacing
templates in jlpint.src must be linked before jlpint.
If parameters in file jlp.par are changed, run JMAKE again. It is safest to
let JMAKE precompile all files again, even if not all files are generally
affected by changes of parameters in jlp.par.

74 Part 4 Setting Up the Working Environment

G. Test JLP
===========

Copy JLP program and test files in the same directory. Run JLP for a test
problem: give as first JLP-command:

incl test.in/*:*

The output should look similar to to contents of file test.out.

H. Revisions of JLP after printing of the manual
==

This section will tell what changes are made in JLP package after printing of
the manual.

******** end of file readme.jlp

4.1.2 Parameter file jlp.par

The programs are written trying to follow the FORTRAN-77 standard. Some common
nonstandard features are useful. Options of the JMAKE precompiler determine if
nonstandard features are included, and what is the syntax of the nonstandard features.
All system specific features and editable size parameters for declaring variables and
vectors of JLP are transmitted in file jlp.par.

Current contents of jlp.par as used in Language Systems FORTRAN 3.0 running in
Macintosh Quadra 700:

****** file jlp.par
**** user can edit only the right-hand sides of the parameters
*
* Precomiler parameters
* =====================
*
$$EXT = .f ! File name extension for source files, e.g.
* ".f",".for" or ".ftn".
$$! = T ! Compiler interprets text after '!' as a comment.
* This parameter has effect only in lines
* generated by JMAKE.
$$DOUBLE = DOUBLE PRECISION
* Data type used in calculations, e.g. REAL*10.
* Precision less than real*8 is not recommended.
$$SOLTYPE = DOUBLE PRECISION !
* Data type for accessing the results.
$$DEFINITIONS=jlp2.src
* ! Files containing global definitions,
* user can/must change the first file only if
* JMAKE is used to precompile other programs. If own
* files included, separate with commas, e.g:
* $$DEFINITIONS=jlp2.src,owndef.src
* The definitions can be at the beginning of ordinary
* source file (as jlp2.src is) that is also precompiled
* with JMAKE.
$$FILES = jlpint.src
* User source files that use global JLP variables or
* variables defined in user
* or JMAKE filtering options. Initially file jlpint.src is
* included here. If user subroutines replace all the
* subroutine templates there, remove jlpint.src.
* If several files separate with commas,e.g:

 JLP 75
* $$FILES = FILE1.SRC,FILE2.SRC
* If all files do not fit to one line,
* give several $$FILES -lines.
* If there are no files put '*' as first character:
* *$$FILES (possible if JMAKE is used for other programs)
*
*
* Options
* ========
*
* Option is in effect: $OPTION = T
* Some options require additional information.
* In that case the syntax is: $OPTION = T = TEXT
* Option is not in effect: $OPTION = F (= TEXT)
*
*options in JLP:
*
$READONLY = T = READONLY
* ! Keyword in OPEN statement used by JLP to open
* files for reading. In multiuser systems, a user
* with reading rights can acces files in other users'
* directories (e.g. in VMS this allows also a shared
* acces). It is always safer to open files with this
* option, as it prevents accidental modifications
* of files. This keyword is nonstandard Fortran.
* In IBM Fortran/2 this option would be
* ACTION=READ.
*
$LIST = T = LIST ! If this option is in effect, JLP opens output
* text files with the nonstandard keyword
* CARRIAGECONTROL='(text)'
* In some systems one may have trouble with the
* carriage control characters of standard Fortran
* text files (e.g. a program may read in characters
* you don't see in the editor or printing).
*
$SUPPRESS = T = $! Format that suppresses carriage return in output.
* This is used to print prompts (e.g. 'jlp>') that
* indicate that JLP waits for input.
* In IBM Fortran/2 this format is: \
*
$VERSIONS = T ! Different systems work differently when a program
* tries to create a new file with name of an existing
* file (e.g. VMS creates new version of the file,
* some systems just delete the old file, and in
* some systems an error occurs). If this option is
* in effect JLP creates version numbers when creating
* new files. For instance if JLP should open a new
* file with name "output.jlp" and a file with
* that name exists, JLP opens the file with name
* "output_2.jlp". Parameter MAXVER given below
* determines the maximum number of versions.
*
$SYSTEM = F = call lib$spawn(inp(ial:lop))
* This option (if in effect) tells what JLP should
* do at JLP command 'system'. Character variable
* inp contains the command line, ial is the first
* nonblank position after 'system ', and lop is
* the last nonblank character of the command line.
* In VMS 'call lib$spawn(inp(ial:lop))' sends the
* command line after 'system ' to the system level
* (e.g. JLP command 'system dir' then prints the
* names of files in the current directory)
*
$OLDMFORM = F ! Old versions of subroutines for reading data are
* included. These subroutines are used used when
* 'xform m' is given as the format.
* See the manual for more details.
*
$MREP = F ! Own report generator subroutine MREP included.
* Invoked by jlp-command 'mrep'. See the manual.
*

76 Part 4 Setting Up the Working Environment
$SECNDS=T= SECNDS(0.)
* Timing function available in the system. The function
* should return the elapsed time measured
* from any fixed point in any units.
*
$CPU =F = ! Timing function measuring time used by cpu.
*

$INIT1=F= ! First JLP command executed when JLP starts.
* For instance, if data files are always in
* directory disk1:[data], this could be
* $INIT1=T= path disk1:[data]
*
$INIT2=F= ! Second command executed when JLP starts. If
* more than two initialization commands are needed,
* the commands can be stored in a file, and
* included with INIT1 option, e.g.:
* $INIT1 =T = include init.in
$OWN1=T=own1 ! Command for calling user subroutine own1(inp,errors).
* File jlpint.src contains a template and more information.
$OWN2=T=own2 ! Command for calling user subroutine own2(inp,errors).
* File jlpint.src contains a template and more information.
*
$DUMP=F ! This option is used for printing information
* for tracing errors in the optimization algorithm.
* Ordinary user should have this option always off.
*
* Parameters:
* ===========
*
* If e.g. parameter MAXNX is too small, JLP gives an error message:
* "*PAR* increase MAXNX"
*
N5 = 5 ! Unit for terminal input.
N6 = 6 ! Unit for terminal output.
*
MAXXMA=900000 !Size of the vector used for xdata.
* If xdata exceed the memory reserved, JLP is slower.
* So put MAXXMA as large as possible.
MAXCMA=2000 ! Size of the vector used to store c-data,
* at least (number of units) * (number of c-variables)
*
MAXREC=8191 ! Maximum number of real*4 variables in one record
* of an unformatted file. MAXREC has effect only if
* parameter MAXXMA is so small that the whole data
* can not be stored in memory, or when the data
* is saved in JLP format using 'save' command.
* Optimal value is dependent how the speed of
* reading depends on the record size.If data does
* not always fit to memory, MAXREC should be
* at most 1/3 of MAXXMA, but probably e.g. 1/20
* of MAXXMA is better. MAXREC should be at least so large
* that one record can hold the x-data for any
* calculation unit
*
MAXNX=100 ! Max. number of x-variables
MAXXS=300 ! Max. number of x-variables computed and printed after 'solve'.
* If the integer solution is not printed, then this should be
* (number of domains) x (number of x-variables printed). If the
* integer solution is printed, then this should be twice as much.
MAXXDX=1700 ! If cost of decrease and increse computed,
* this should be at least:
* (# of domains) x (# of x-variables printed) x (# of basic x-variables)
MAXNR=40 ! Max. number of rows in a problem (area constraints
* are not counted)
MAXNXP=60 ! Max number of x-variables in a problem definition,
* rows including a single x-variable without
* a coefficient are not counted.
MAXML=1000 ! Max. number of calculation units.
MAXMV=200 ! Max. number of shcedules in one unit
MAXSPL=20 ! Max number of parts in a unit when a unit is split
MAXSPT=100 ! Max. total number of parts in all split units

 JLP 77
MAXCOM=30 ! Max. number of domain combinations
MAXDOM=30 ! Max. number of domains
MAXNC1=30 ! Max. number of c-variables
MAXNZ=50 ! Max number of z-variables
MAXDAF=30 ! Max number of data files used in xdat - command
MAXVER=3 ! Max. number of file versions if $VERSIONS = T
*
* unit numbers used by jlp files (change if these conflict with
* unit numbers used in own subroutines):
*
NUSAVX = 33 ! Unit for saving data
NUSAV2 = 34 ! Unit for rewriting save file
NU1 = 35 ! Unit for several JLP files
NU2 = 36 ! "
NUOUT = 37 ! Unit for additional output
*
* units for included files:
NF1 = 41
NF2 = 42
NF3 = 43
NF4 = 44
NF5 = 45
NF6 = 46
*
* units the user can use in own interface routines e.g.
* for reading data and report writer:
NUOWN1=51
NUOWN2=52
*
LCOMLI=600 ! Max length of the command (including continuation lines)
LLINE=130 ! Max. length of a command record
LPROBL=200 ! Max length of command line in problem-paragraph
*
**text buffers
*
LENINC =1640 ! Length of the input buffer 'INC'
LININC = 100 ! Max. number of lines of the input buffer
*
LENOUT =2640 ! Length of the output buffer 'OUT'
LINOUT = 100 ! Max. number of lines of the output buffer
*
LENDTR = 800 ! Length of buffer 'DTR' for d-transformations
LINDTR = 50 ! Max number of lines in the buffer for d-transformations
*
LENLOO = 400 ! Length of the buffer 'LOO' storing DO-loops
LINLOO = 60 ! Max. number of lines in the buffer
*
LENCON = 160 ! Length of buffer 'CON' for constant definitions
LINCON = 10 ! Max. number of lines in the buffer
*
LENPRO =1024 ! Buffer 'PRO' for constraint definitions (without rhs)
* Max. number of lines = MAXNR
*
LENSDO=400 ! Buffer 'SDO' for storing show/domain definitions
LINSDO=40 ! Max. number of lines.
**end of text buffers
*
LVARNA=32 ! Length of character variables used for variable names
LFORM =130 ! Max. length of formats xform and cform
LFILNA=50 ! Max. length of file names
LDOMNA=40 ! Max. length of domain specifications
LPATHN=40 ! Length of character variables used for PATH
NDTRAN=300 ! Length of compiled d-transformations
NCTRAN=300 ! Length of compiled c-transformations
NXTRAN=300 ! Length of compiled x-transformations
NDUTRA=300 ! Length of compliled dupl-transformations
NSDTRA=200 ! Length of transformations defining show/domains
NINT =50 ! Max. number of intermediate results in transformations
NPARA =100 ! Max. number of constants in transformations
NIDOUT=100 ! Max. number of output variables in d-transformations
NICOUT=100 ! Max. number of output variables in c-transformations
NIXOUT=100 ! Max. number of output variables in x-transformations

78 Part 4 Setting Up the Working Environment
MAXRHS=5 ! Max. number of rhs's in problem-command,
* note that your own NEXT subroutine may generate more rhs's
LEVELP=3 ! Default value for printlevel
LEVELO=1 ! Default value for outlevel
*
* Own parameters can be added here. For instance, if you need
* additional unit numbers, it is a good idea to determine them
* here so it is easier to prevent conflicting numbers. See manual for
* how to use JMAKE in own subroutines. An example: integer
* parameters NUOWN3, NSIZ a real parameter DELTA, a double precision
* parameter DDELTA and character parameter TEXT can be defined by
* deleting '*' in the following lines:
*NUOWN3 = 77
*NSIZ = 123
*DELTA = 1.3 ! JMAKE assumes the first character convention of Fortran
*DDELTA = 1.2D0 ! Double precision parameters should include '.' and 'D'.
*TEXT = 'Help, Help'
** JMAKE will generate the corresponding parameter statements,
** if the program contains a section:
*needs:
*NUOWN3,NSIZ,DELTA
*DDELTA,TEXT
*end:
** end of file jlp.par

4.1.3 Features of standard FORTRAN not used

Some FORTRAN compilers do not implement all standard features. And some
companies seem to interpret the standard differently. In order to avoid difficulties with
less general compilers, the following features were not used:

– character and numeric data in the same common area
– alternative entry points in subroutines
– alternative return addresses
– same character variable on both sides of an assignment statement

4.2 Output Files in non-VMS Environment

New files are opened by save, outfile and write commands. Operating systems
work in different ways when a program tries to open a new file with a name of an
existing file. The VMS operating system just creates a new file with a new version
number. In the UNIX operating system an error occurs. Using LS- FORTRAN in
Macintosh the new file replaces (and thus deletes) the old file. If option $VERSIONS is
set to T in file jlp.par, then JLP appends version '_n' to the file name (before file name
extension) if there is a file with the given name. The version number will be one higher
than the highest existing version. The first version does not have a version number. If
the version number would be higher than MAXVER parameter given in jlp.par, then an
error occurs.

For input files defined by cdat, xdat or unsave commands, JLP expects to get the full
file names, i.e. JLP does not try to figure out what version might be in question. If data

 JLP 79

are stored in the internal format using save command, then the unsave command is
written into the '.sav' file with the correct version numbers.

4.3 Sending a Command to the System Level

While using JLP interactively, the user may need to interrupt the JLP session to do
something at the system level (e.g. copy files). In a modern windows based operating
system (e.g. in Macintosh), the system level can be accessed easily. If you are using a
simple VAX-VMS terminal, you can set the following JMAKE option to T:

$SYSTEM = F = call lib$spawn(inp(ial:lop))

Thereafter system command can be used to send the command line to the operating
system:

system dir ! get directory
syst edit file.in ! edit file 'file.in'

In operating systems other than VMS, you may replace the call to lib$spawn with a
call to another system routine. The argument 'inp(ial:lop)' contains the command
line after the system command.

4.4 Creating Own Timing Subroutine

 In the version of jlp.par listed above it is assumed that the function SECNDS provided
both by VAX FORTRAN and Language Systems FORTRAN is used for timing. If the
system does not support SECNDS then you may make your own timing subroutine into
a source file linked with JLP. For instance, in IBM FORTRAN/2, an corresponding
timing function might be:

 function secs()
 integer*2 hh,mm,ss,hd
 call gettim(hh,mm,ss,hd)
 is=hh*3600+mm*60+ss
 secs=is+hd/100.
 return
 end

To use this function, change $SECNDS option into:

$SECNDS=T= SECS()

Elapsed time can be measured in JLP using time command. The time used in the
optimization phase is also measured automatically. If $CPU option is in effect (and
corresponding function provided), also elapsed cpu-time is measured.

80 Setting Up the Working Environment Part 4

4.5 Management of Programs with JMAKE Precompiler

JMAKE is a general purpose precompiler used to manage global parameters, global
variables (stored in common areas), lengths of character variables and system
dependent options.

JMAKE is case sensitive.

4.5.1 Accessing JLP global parameters and variables

JLP is designed so that all JLP subroutines and subroutines written by the user can
access all global variables and parameters of JLP (henceforth term 'variable' is used to
refer to both variables and parameters). Because the standard FORTRAN does not
recognize global variables, JMAKE precompiler was made to manage global variables
in a transparent way. JMAKE generates necessary definitions of variables and common
areas for all variables that the subroutine needs.

Editable parameters are given in file jlp.par, and other global variables are in the file
given in $$DEFINITIONS statement in jlp.par (currently in file jlp2.src). JMAKE
precompiles all files given in $$FILES statement in jlp.par and all files listed in $FILES
section in files given in $$DEFINITIONS statement in jlp.par (with this a little
complicated system JMAKE can hide definitions that the user is not allowed to change).
JMAKE generates definitions for global variables listed in 'needs:' sections of the file. A
'needs:' section looks like:

*needs:
*KEEPCL,KEEPXL,LISTXS,TITLE,LIST,VNAME
*BATCH,INPUT,LEVEL,LEVEL2,LEVEL3,NOUT,NOUT2
*BMAT
*end:

It is possible to edit the output file of JMAKE and make it the new input file of JMAKE
by changing the file name extension into '.src'. In order to avoid confusion with file
names, this is not recommended except in case when corrections are accidentally made
to '.f' file.

 pThe user should define all variables in subroutines using JLP global variables, so that the
compiler will print an error message if the user is trying to define a local variable
having the same name as a JLP global variable. Note that in order to make proper
definitions of common areas, JMAKE generates also variables not included in the
'needs:' section. The user can not rely that these additional definitions generated will
remain the same in future versions of JLP.

 JLP 81

4.5.2 Using JMAKE to manage own data structures

When writing own subroutines linked with JLP, the user may need to define own
global parameters and variables. It is recommended that the user will manage his/her
own global parameters and variables with JMAKE precompiler.

Parameters can be defined either by adding parameters directly into jlp.par or defining
them in the same way as variables (see below). Here jlp.par refers to the parameter file
of JMAKE (recall that the parameters can be in any file). Own variables can be defined
as follows:

 1) Add to $$DEFINITIONS statement in jlp.par the name of the file that contains the
JMAKE definitions (that file can be ordinary source file as jlp2.src is).

2) Define the parameters, variables and common areas at the beginning of the file (later
called definitions section) given in $$DEFINITIONS statement.

All lines in definitions section start with '*'. A comment line starts with '**'. Character '!'
starts an end-of-line comment.

A definitions section must first contain $FILES subsection that looks like:

*$FILES ! files to be precompiled
*jlpsub.src
*jlpopt.src
*jlp2.src
*jlp.src
*$END

If no files are specified here (recall that these files can be given also in $FILES section
of jlp.par) , this section contains only *$FILES and *$END lines. Then the definitions
section may contain a parameter section like:

*::PARAMETER
*MAXOPN =7 ! Max. number of simultaneous open include files
** comment
*MAXNC=MAXD+8 ! MAXD must be defined earlier in jlp.par
*MAXNV=MAXNC+4 ! total number of variables
*LCHAR=1300 ! parameter used later to specify the length of character
** variable
*RPAR=1.58 ! real parameters can also be given
*DPAR=1.67D0 ! double precision parameters must contain both '.' and 'D'
*TXT = 'Message' ! Character parameters are also allowed

pParameters can be equally well given in jlp.par as in '*::PARAMETER' section in
definitions file.

Thereafter definitions can contain sections as:

*::VTYPE ! VTYPE can be any variable type recognized by the compiler
*CFC ! Variable doing something useful

82 Part 4 Setting Up the Working Environment
**AML ! comment
*MV(-2:MAXNC) ! MAXNC needs to be a parameter defined earlier

If e.g. variable MV is needed in somewhere (it is in 'needs:' list or it is required to build a
common area properly), JMAKE generates:

 PARAMETER (MAXD=100) ! this comes from jlp.par
 PARAMETER (MAXNC=MAXD+8) ! from *::PARAMETER section
 VTYPE MV(-2:MAXNC) ! MAXNC needs to be a parameter defined

Thus if a variable is needed, JMAKE generates automatically all the parameters needed.

If jlp.par contains a JMAKE $$-parameter like:

$$VTYPE= CTYPE*8 ! CTYPE*8 is a variable type known to the compiler

then JMAKE replaces the type VTYPE with type CTYPE*8:

 CTYPE*8 MV(-2:MAXNC) ! MAXNC needs to be a parameter defined

There are no assumptions for variable types used in definitions section, thus all types
accepted by the compiler can be used.

A special treatment is given for '*::CHARACTER' section which may look like:

*::CHARACTER
*100 VNAME(MAXD)
*LCHAR APUNIM ! LCHAR is a parameter defined earlier

If VNAME and APUNIM are needed, JMAKE will generate

 PARAMETER (MAXD=100)
 CHARACTER*100 VNAME(MAXD)
 CHARACTER*1300 APUNIM

Note that statement

 PARAMETER (LCHAR=1300)

will be generated only if it is needed for other purposes in addition to specifying the
length of APUNIM. A parameter determining the length of a character variable must be
given literally, i.e. , definition
*LCHAR=LC1+LC2

is not allowed.

Common areas are defined in *::COMMON subsection as follows
*::COMMON
*JLPDAT ML,MV,NSTICLA,>
* IFREE,LMEM,ILINK1,LOCREJ,IXAP
*JLPXMA XMAT,CMAT

 JLP 83

The first name is the name of the common area. Character '>' at the end of line
indicates that the items in the next line belong to the same common area. If a variable in
a common are is needed, then JMAKE will generate definitions for all the variables and
the definition for the common area. JMAKE splits the lines in the definition of the
common in the same way as splitted in the *::COMMON subsection, so the line can not
be too long (JMAKE gives an error message if line is too long). JMAKE also generates
SAVE statement for each common it creates, so commons created by JMAKE are static
also in systems where default is that commons are dynamic.

There can be several definitions for the same common area. JMAKE will generate the
definition containing variables needed in the subroutine (of course variables given in
different definitions can not be used in the same subroutine). This way different
subroutines can share the same working areas. JLP uses a common JLPWRK this way.
The user can also use this common in report writer but not in subroutines used in
transformations and reading the data into the program.

JMAKE can be used to generate also definitions for local variables. Variables will
automatically be local if they are not contained in any common.

The definitions section ends with:
*::END

4.5.3 Using JMAKE precompiler options

If the user is making programs that should be used in different operating systems, then
the precompiler options of JMAKE might be useful. Assume that jlp.par contains e.g.
option:
$MREP = F ! option is not in effect

 or
$MREP = T ! option is in effect

 Then a program may contain section
*IF MREP
 call ownsub(par1,par2)
 write(n6,*)'kukuu'
*END

 or section
*IF MREP
 call ownsub(par1,par2)
*ELSE
 write(n6,*)'kukuu'
*END

 or section
*IF NOT MREP
 call ownsub(par1,par2)
*END

84 Part 4 Setting Up the Working Environment

JMAKE will then comment out the lines according to the value (T/F) of option $MREP.
No ordinary comment starting with '*' is allowed in '*IF ... *END' section.
Options can be associated with a text string that can be used to transmit system
dependent features into the code. For instance, assume that jlp.par contains:
$SECNDS=T= SECNDS(0.)

Then the program may contain:
*IF SECNDS REPLACE ??
 TIME=??
*ELSE
 TIME=0
*END

String defining what must be replaced if option is in effect can be anything (or contain
even spaces). This is useful if JMAKE is used to precompile the output file of JMAKE
where the original string (e.g. '??') has been replaced with e.g. 'double precision'.

4.5.4 Using JMAKE in other programs

JMAKE does not contain JLP specific assumptions. Thus it can be used in any program.
The following changes are needed if JMAKE is used in other programs :

1) Change the default name of the parameter file determined in file jmake.f (this is not
necessary as JMAKE asks if the default parameter file should be replaced with some
other file).

2) Make the corresponding parameter file. At least $$FILES and $$DEFINITIONS
statements must be different from jlp.par.

3) Make a definitions section to each file listed in $$DEFINITIONS statement in the
parameter file.

4) Make 'needs:' section to each subroutine where global parameters or variables
are needed.

5) If compiling options are needed, make corresponding '*IF option ... *END'
sections.

4.6 Using JLP Data Structures and Subroutines

This section describes some general properties of those JLP data structures and
subroutines that the user may need in writing own interface, data input and report
generator subroutines. All variables and parameters mentioned can be accessed using
'needs:' construction of JMAKE.

 JLP 85

4.6.1 Listing headers of subroutines with JLP

The purpose of this chapter is to introduce some possibilities how the user can add
extra properties to JLP. More detailed (and updated) information is found in source
files. JLP can be used to extract the summary headers of subroutines from the source
files. Each subroutine has a short header (containing the subroutine or function
statement and the purpose of the subroutine), and a longer header containing more
information. Both headers starts with '*='. A short header ends with '**' and a long
header ends with '***'. The short headers of all subroutines in file jlpsub.src can thus be
printed as follow:
jlp>list/all jlpsub.src/*=:**

The headers in other files can be listed similarly (in addition to jlpsub.src, jlpint.src may
be of special interest).

The longer forms of all headers can be listed as follows:

jlp>list/all jlpsub.src/*=:***

The listing of short headers in file jlpsub.src included:
*=jnewf=== file jlpint.src =========================
 subroutine jnewf(iunit,form,name,name2,errors)
* Opens a new file (possibly a new version).
**

The long header of this specific module can be printed as follows:
jlp>list jlpsub.src/*=jnewf:***

The whole module jnewf can be listed as follows:
jlp>list jlpsub.src/*=jnewf:*=

4.6.2 Changing JLP subroutines

File jlpint.src contains subroutine templates whose purpose is to help the user to write
own special subroutines for data access, transformations, report writer etc. Also the
main program in file jlp.src can be replaced with custom main program. It is
recommended that before making changes, the corresponding modules are copied into
an own file, and this file is linked before files provided by JLP files so that standard
routines will be replaced.

4.6.3 JLP data variables

As described in Chapter 2.5, JLP puts d-, c-, x- variables in the same vector 'V' when JLP
read data or makes transformations. The variable names are stored in character vector

86 Part 4 Setting Up the Working Environment

'VNAME'. The user can not assume any specific order of V-variables, except that
variables created by an xvar, cvar, or const command and in one dtran, xtran, or
ctran transformation paragraph are consecutive (this can be used in %-loops in
transformations).

Variable lists

 JLP refers to a subset of variables using integer vector called variable list having the
following structure. For instance a variable list listxs is defined:

 integer listxs(-1:MAXNX)

where MAXNX is a global JLP parameter. Element (-1) tells the maximum number of
elements (i.e. listxs(-1)=MAXNX). Element (0) tells the actual number of elements
(i.e. 0•listxs(0)•MAXNX). Element i, 0•i•listxs(0) refers to an element in V-
vector, the name of the variable is VNAME(listxs(i)).

The user may need following subroutines for handling variable lists:

*=ilapp=== file jlpsub.src ======================
 subroutine ilapp(ix,list,errin,errors)
* Appends variable ix into a variable list 'list'.

*=ilfind=== file jlpsub.src ============================
 subroutine ilfind(ix,list,ilout)
* Finds the position of variable ix from a variable list.

*=ilmerg=== file jlpsub.src ===========================
 subroutine ilmerg(list1,list2,list3,errin,errors)
* Merges variable lists list1 and list2 into list3

*=ilput=== file jlpsub.src =======================
 subroutine ilput(ix,list,errin,errors,ilout)
* Puts an element ix to a list if it is not there.

*=ilret=== file jlpsub.src ==
 subroutine ilret(ix,list)
* Removes an element ix from a variable list and puts it into reserve

The user may need e.g. the following subroutines that treat also the names of
variables:
*=jname=== file jlpsub.src ===============================
 subroutine jname(inp,names,nxres,nx,list,errors)
* Finds numbers of variables and makes new variable names.

*=joutl=== file jlpsub.src ====================
 subroutine joutl(level,buf,list,name)
* Print names of variables in a variable list.

*=mlist=== file jlpsub.src ==========================
 subroutine mlist(ch,ial,lop,nimi,nx,mul,errors)
* Makes a variable list.

*=mtja=== file jlpsub.src =====================
 function mtja(nimi,nx,xni)
* Finds the number of a variable with name xni.

 JLP 87

Special variables

There are some special variables used for handling transformations etc. These variables
should not generally be used for other purposes. JLP does not generally try to check if
these variables are misused, as there are legal ways to handle these variables in
nonstandard way (e.g. rejection variable 'reject' can be read directly from data). The
global parameters for variable numbers and the names of the special variables are:

*IVDATA 'data' variable
*IVUNIT 'unit' variable
*IVS 's' variable (current schedule)
*IVONE number of variable having value 1.
*IVDUPL number of 'duplicate' variable
*IVSPLI number of 'split' variable
*IVNS number of variable 'ns'
*IVREJ number of variable 'reject'

How these variables are treated is described in Chapter 2.5.

4.6.4 Accessing stored c- and x-data

The user may want to access the stored c-variables and x-variables e.g. in her/his own
report writer. Variable list KEEPCL tells what variables are stored as c-variables in
simple vector CMAT defined as 'real CMAT(MAXCMA)', where MAXCMA is a global
parameter given in jlp.par. The number of stored c-variables is thus KEEPCL(0). The
first KEEPCL(0) elements of CMAT are the c-variables for the first unit, and so on up to
the last unit ML. The name of first stored c-variable is VNAME(KEEPCL(1)), etc.

Variable list KEEPXL tells what are stored x-variables. Storage of x-variables is more
complicated, because JLP is designed to be able to handle x-data that exceed the
memory, and because JLP generates temporary x-variables for linear combinations of x-
variables appearing on the rows of a linear programming problem. X-variables can be
accessed by calling subroutine jstun for each unit started:

*=jstun=== file jlp2.src =======
 subroutine jstun(ic,ranac)
* Makes x-data ready for unit ic.
**
* Reads data from disk if necessary.
* Updates LISTV0 so that variable KEEPXL(ix) for schedule is
* can be accessed using statement function:
* x(is,ix)=XMAT(LISTV0+(is-1)*NXDD+ix).
* An equivalent (more complicated but clearly faster)
* way to access several x-variables in the same schedule is to compute
* the base addres for each schedule is as follows:
* isbas = LISTV0 + (is-1) * NXDD
* or if all schedules are acceses in order by defining starting
* value of isbas and adding NXDD for each schedule.

88 Part 4 Setting Up the Working Environment
* Thereafter x-variable KEEPXL(ix) can be accessed with statement function:
* x2(ix)=XMAT(isbas + ix)
* Note: KEEPXL, XMAT, LISTV and NXDD are globals variables
* accessed with 'needs:'
* input parameters:
 integer ic
* ic = unit
 logical ranac
* ranac = .true. if units are accessed in any order (i.e.
* not necessarily in order 1,2,...,ML.
* If data does not fit to the memory, it is recommended
* that even with ranac=.true. the unit numbers in consecutive
* calls are in increasing order (units may be missing) so that
* work file needs not to be rewinded repeatedly.
**

Thereafter keepxl variables can be accessed with either of the statement function
described above in the header of jstun. A global function subroutine is not used in
JLP, because satement functions work much faster.

4.6.5 Text buffers

Text is stored in text buffers. Each buffer has a three character name called later
'bufnam' e.g. bufnam='DTR'. A text buffer is a single character variable to which all text
lines are packed. The name of the variable is bufnam//'BUF', e.g. 'DTRBUF'. The length
of the variable is determined by JMAKE parameter given in file jlp.par. the name of the
length parameter is 'LEN'//bufnam e.g. 'LENDTR'. Associated with each buffer is a
link vector with name 'LNK'//bufnam (e.g. 'LNKDTR') which tells the size of the buffer
used to prevent overflow, and links to the first character in each line. The maximum
number of lines in a buffer is given by a parameter with name 'LIN'//bufnam, e.g.
'LINDTR'. The buffer name is stored in the buffer variable so that the buffer
subroutines can generate error messages if parameters are too small. The user may also
use the following buffer subroutines:

*=bufapp=== file jlpsub.src =========================
 subroutine bufapp(inp,le,txtbuf,lnktxt,errors)
* Adds string inp to standard buffer txtbuf.

*=bufio=== file jlpsub.src =============================
 subroutine bufio(what,line,L,errors)
* Sends commands to JLP and gets the JLP output.
* Handles command buffer 'INC' and output buffer 'OUT'.

*=bufpri=== file jlpsub.src ===========================
 subroutine bufpri(nu,txtbuf,lnktxt)
* Prints the contents of text buffer txtbuf into a file.

For more information about text buffers, see the long headers of the above subroutines,
especially of the subroutine buffapp.

4.6.6 String manipulation

The user may use the following string manipulation subroutines:

 JLP 89
*=adjul2=== file jlpsub.src ==
 subroutine adjul2(inp)
* Adjusts a character variable to the left, i.e. removes initial blanks

*=chi5=== file jlpsub.src ===========
 character*5 function chi5(i,il)
* Returns integer i as character*5.

*=chr8=== file jlpsub.src ====================
 character*8 function chr8(a)
* Returns real value as a character*8 variable.

*=chr10=== file jlpsub.src ===========================
 character*10 function chr10(a)
* Returns double precision a as character*10 variable.

*=len1=== file jlpsub.src =========================
 function len1(str)
* Returns the position of first nonblank character.

*=len2=== file jlpsub.src ==================================
 function len2(str)
* Returns the length of str when trailing blanks are ignored

*=nexlim=== file jlpsub.src ============
 function nexlim(inp,ial,lop,limit)
* Finds the next limiter.

*=repl=== file jlpsub.src ===========================
 subroutine repl(jono,jono1,jono2,lkm1,lkm2,lop)
* Replaces substring with another string.

*=jrepl=== file jlpsub.src ================================
 subroutine jrepl(jono1,i1,i2,lop,jono2,le2)
*replaces the substring jono1(i1:i2) by string jono2(1:le2)

4.6.7 Printing subroutines

JLP prints almost all results using subroutine jout that prints a character line
(character variable) to terminal, output file and output buffer according to the current
options of printing (determined by printlevel, outlevel, outfile, buflevel).
(Currently the optimization algorithm prints information about how the optimization
proceeds only to the terminal.) The user can also call this and other printing
subroutines:
*=jout=== file jlp2.src ===============================
 subroutine jout(ilevel,buf)
* Outputs a line into screen and/or file and/or buffer.

*=jouti=== file jlpsub.src =============
 subroutine jouti(level,buf,ivec,n)
* Outputs an integer vector.

*=joutl=== file jlpsub.src ====================
 subroutine joutl(level,buf,list,name)
* Print names of variables in a variable list.

90 Part 4 Setting Up the Working Environment

4.6.8 Transformation subroutines

JLP handles all transformations (dtran-, ctran-, xtran-, dupl-, and parin-
transformations and definitions of domains) with the same subroutines.
Transformations are first compiled with subroutine compi:

*=compi=== file jlpsub.src ===
 subroutine compi(teku,nteku,nimi,nxres,nx,x,nint,npfrst,nxtot,
 6 jono,errors,ixoutl)
* Compiles a transformation line jono into vector teku.

Compiled transformations are then made for variables stored in vector x with
subroutine muun:

*=muun=== file jlpsub.src ===========
 subroutine muun(x,teku)
* Computes compiled transformations.

The user can use these transformation routines for own purposes.

If there are no defined transformations, subroutine muun can be called safely (i.e. with
immediate return) if the vector of compiled transformations (teku) is properly
initialized (otherwise unpredictable problems with memory will occur).

4.7 Creating Own Transformation Subroutines

It is possible to add own functions that can be used in transformations exactly as the
predefined functions. Own functions can be added by editing function ifunc and
subroutine func in file jlpint.src. JLP global parameters and variables can be used but
they are not generally necessary.

To show how this can be done, function npv is included as an example. Transformation
defined as:

present_value=npv(3,100,0,50,2,-70,10)

will calculate the net present value using 3% interest rate when there is instant income
100, income 50 after 2 years and payment 70 after 10 years. There can be any number of
(income,time) - pairs in the function call, and any of the arguments can be a variable.

A new function can be defined by editing function ifunc and subroutine func
properly:

*=ifunc=== file jlpint.src ===
 function ifunc(name)
* Defines function names for own functions and returns their number.

*=func=== file jlpint.src ==============
 subroutine func(teku,x)
* Compute the value of an own function.

 JLP 91

4.8 User Designs for RHS Generation

The user defines constraints in the problem paragraph in form:

volume =1000 / >100 <1000 / >0

Then solve r command tells JLP to use rth set of RHS's, or solve +r tells JLP to use
the set of RHS's with number: previous_number + r. If many sets of RHS's are used in a
systematic way it is tedious to write all the combinations into the problem paragraph. If
the solve command is given with option starting with '/m', e.g.:

solve/mmethod r

 or
solve/mstandard +r

then the subroutine next is used to generate RHS's:

*=next=== file jlpint.src ==================
 subroutine next(method,ir,errors)
* Gets new upper and lower bounds for JLP.

 The whole option is transmitted to next as a character variable method and can be
used as input parameter for specifying the method for generating the RHS. The lower
and upper bounds given in the problem paragraph can be used as parameters for
defining new RHS's. Subroutine next contains the code for a method 'mstandard' which
generates RHS's exactly in the same way as the standard interface without explicit
method. The standard interface does not use subroutine next, so the user can safely edit
it.

4.9 User Defined Data Input

If the format for x-data is given by 'xform m' (where 'm' stands for 'my_own'), then both
x-data and c-data are read in using user defined subroutines. If 'xform m' is in effect,
JLP opens files and reads records as follows (transformations etc. are made as described
in Chapter 2.5):

 call minit - initializes reading

 do ifi=1, (number of xdat files)

 call mopen ! Open ifith cdat and xdat file

 ! get the number of treament units in file

 do iu=1, (number of units)

 call mgetc ! read values of cvar variables of the unit

 do is = 1, ns ! ns = number of schedules in the unit

 call mgetx ! read values of xvar variables from xdat file

 end of loop over schedules

92 Setting Up the Working Environment Part 4
 end of loop over units

 end of loop over files

 call mfinit - open files can be closed etc.

Terms 'open a file' and 'reading variables' mean that such operations are done in the
user subroutines that work similarly as if files were opened and records read. For the
user, the essential fact is in what place in the loop structure each subroutine is
called.There does not need to be a one-to-one connection between the logical and
physical operations. For instance, xdat file names can be area codes of a data base
system, and c-variables and x-variables may be stored in the same data base. Or, files
can be opened in the mgetc subroutine. It is also possible that treatment schedules are
simulated in place. JLP does not change values of c-, and x-variables (unless modified by
ctran and xtran transformations), so it is possible that mgetc and mgetx give only
the changing values. This may be handy if data contain several levels of hierarchy (e.g.,
state, coynty, village, farm).

File jlpint.src contains subroutine templates that the user can use as starting point when
defining own subroutines, or as dummy subroutines in case no special input
subroutines are needed:

*=minit=== file jlpint.src ============================
 subroutine minit(errors)
* Initilizes everything for reading data with 'xform m'

*=mopen=== file jlpint.src ==
 subroutine mopen(mlfil,errors)
* Initializes reading of new data, called for each element of xdat-list

*=mgetc=== file jlpint.src =========================
 subroutine mgetc()
* reads the c-variables of the next calculation unit

*=mgetx=== file jlpint.src ==================
 subroutine mgetx()
* Rreads the x-variables of the next schedule.

*=mfinit=== file jlpint.src ========================
 subroutine mfinit(errors)
* Cleans everything after reading data with 'xform m'

The provided subroutine templates work in the same way as if 'xform b' and 'cform
*' would be in effect.

4.10 Writing Own Report Writer

If the printing options provided by JLP (show, sched) are not enough, or the results
are needed in binary form for further analysis, the user can write his own report writer.
Using JLP subroutines and global variables, a report writer can have access to the
following variables:

1) termination status of the problem

 JLP 93

2) RHS's used in the solution
3) values of rows (utility constraints + objective function)
4) shadow prices of utility constraints
5) values of (aggregated) x-variables (including x-variables not used in the problem

definition)
6) shadow prices of x-variables included in the problem
7) cost of forcing x-variables to have smaller or greater value they obtained

according to the solution (x-variables may or may not have been used in the
problem definition)

8) values of z-variables used in the problem definition
9) reduced costs of nonbasic z-variables
..............
10) weights of schedules in the solution
11) shadow prices of units (= shadow prices of basic schedules)
12) shadow prices of nonoptimal schedules (reduced cost for forcing nonbasic

schedules into the solution)

JLP prints quantities 1) – 9) automatically after solving each problem (according to the
current options of show command). How the user can replace or augment this report is
described in the next section. JLP prints quantities 10) – 12) connected with schedules
with sched command. How these reports can be replaced or augmented is described in
the section thereafter.

4.10.1 General part of the report writer

The general report JP prints after each solution can be replaced or augmented by
editing the subroutine template repo:

*=repo=== file jlpint.src =================
 subroutine repo(inp,errors)
* subroutine template for own report writer

If the user writes a command line starting with 'repo' then JLP calls subroutine 'repo'.
The whole command line is transmitted as an input character variable to the
subroutines, so that the user can specify in the command line all necessary printing
options. If option '/repo' of command show is in effect, then the report is generated
always with repo instead of the standard JLP report writer. The command line
transmitted to repo is in this case the solve command line, and can not be used so
easily to transmit report writer options. The provided template for repo prepares
basically the same report as JLP usually does but in a slightly simplified format.

If JMAKE option $MREP is in effect, then JLP will call subroutine mrep exactly in the
same ways as repo is called. That is, if a command line starts with 'mrep' then JLP calls

94 Part 4 Setting Up the Working Environment

subroutine 'mrep'. And if option '/mrep' of command show is in effect, then the report
is generated with mrep instead of the standard JLP report writer. If both option
'/repo' and option '/mrep' are in effect, then JLP calls first repo and thereafter
mrep. Report writer repo is intended for a general purpose report writer, and mrep
for report writer for special data structures (e.g. MELA system), i.e. for the case when
the data are read in with 'xform m'.

Because the use of mrep is identical to the use of repo, there is no separate subroutine
template for subroutine mrep (one can start making mrep from a copy of repo where
the subroutine name is changed into mrep).

The header of repo contains a list of those global variables that are possibly needed.
The options of show command determine what global variables are actually computed
by JLP. For instance, the integer approximation is computed only if '/int' option is in
effect, and cost of decrease and increase is computed only if '/cost' option is in effect.
The shadow prices of x-variables are not computed into global variables, because they
are fast to compute with subroutine jpix when needed:

*=jpix=== file jlp2.src ====================
 subroutine jpix(idom,iv,ipres,pix)
* computes the shadow price for an x-variable

4.10.2 Report writer for schedule information

The user may want to treat the schedule information (items 10-12 above) differently
than command sched allows. A subroutine template showing how to access the
necessary global variables is in subroutine own1:
*=own1=== file jlpint.src ===
 subroutine own1(inp,errors)
* Subroutine template for own command given in OWN1 option in jlp.par.
* Currently includes template for report writer replacing
* sched command and showing how to access c- and x-data.
**

Subroutine own1 can be accessed with a command given in file jlp.par (see section
4.1.2). The default command name is own1. The user may wish to combine all report
writing procedures into subroutine repo and/or subroutine mrep described above.

The shadow prices of schedules (including shadow prices of units) are not computed
into a global vector. They can be accessed with subroutine jpis:
*=jpis=== file jlp2.src ===================
 subroutine jpis(iunit,is,spsc)
* Computes the shadow price of an schedule.

 JLP 95

 4.11 Creating Own Interface

JLP is designed so that the user can easily create totally new interface with menus and
buttons etc. on the provided command based interface. This can be done using input
and output buffers. There are three main strategies for building an own interface.
Because JLP controls command input and printed output independently, it is possible
to choose the input method from one strategy and output method from another.

4.11.1 Main program interface calling JLP

The provided main program in file jlp.src is very simple. It basically just calls
subroutine jlpin that contains the standard JLP interface. Thus the user can write an
own main program that will replace the standard main program.

The main program must (here the program calling JLP subroutine jlpin is called
main program, it can also be a subroutine) define an character variable for error
messages and a variable for receiving output:

 character*80 errors
 character*78 outlin ! the length can be also e.g. 80
* errors must initially be empty
 data errors/' '/

The main program can communicate with jlpin using subroutine bufio:

*=bufio=== file jlpsub.src ==============================
 subroutine bufio(what,line,L,errors)
* Sends commands to JLP and gets the generated output
**
* INPUT:
* what = 'in' adds line to command buffer INC
* = 'in/clear' clears command buffer
* = 'out' gets a line from output buffer OUT
* = 'out/clear' clears output buffer

The main program can put a package of commands to the command buffer using 'in'
as what parameter of bufio. If last command put to the buffer is 'end' then the
control can be obtained back to the main program (otherwise control remains in JLP,
usually JLP would wait input from the terminal). For instance:

* output is put to the output buffer:
 call bufio('in','buflevel 2',L,errors)
 if(errors(1:1).ne.' ')goto 999 ! errors are checked there
* error messages start always in column one, it is faster to test
* only first character
 call bufio('in','end',L,errors)
 if(errors(1:1).ne.' ')goto 999

JLP can then be asked to execute the commands:

 call jlpin(errors)

96 Part 4 Setting Up the Working Environment

If parameter buflevel has been >0, the output has been send to the output buffer that
can be printed e.g. as follows:.

10 call bufio('out',buf,L3,errors)
 if(L3.lt.0)goto 20
 if(l3.gt.0) write(n6,*)buf(1:L3)
 goto 10
20 (new commands)

After solving a linear programming problem, an own report generator can be accessed
either directly from the main program or via JLP (e.g. with JLP command report).

4.11.2 Interface in a subroutine called by JLP

If JLP gets command buff it calls subroutine buff:

*=buff=== file jlpint.src ===============================
 subroutine buff(inp,errors)
* An example of an interface operating through the buffer.

The subroutine template written to subroutine buff is handling similar interface as
the main program interface described in the previous section. Commands are read
from the terminal with prompt 'bufin>' and they are put into the command buffer.
When string '//' is encountered, control returns to the calling subroutine jlpin and
stored commands are executed. If buff is the last command put to the buffer, control
returns back to this subroutine. If buflevel is given a positive value, then output goes
to output buffer that can treated in this subroutine first.

The main program provided will give control directly to subroutine buff, if JMAKE
option $INIT1 in jlp.par is given value 'buff'.

It depends on the structure of the interface and on what other tasks the interface is
controlling if it is easier to build the interface into main program (or a subprogram) that
calls jlpin, or if it is better to build the interface into subroutine buff that is called by
jlpin.

4.11.3 Replacing terminal input and buffer output

The interface structures described in the two previous sections are based on the idea
that the interface is intelligent, i.e., the interface knows what it is striving at so that it
can send to JLP command packages that accomplish major tasks. But an interface may
be just an other way of sending commands to JLP and printing the results. For instance,
the user may want to send commands using buttons or menus and get results to
different windows. In such an interface the main thing is that terminal input and
output (FORTRAN read and write statements) must be replaced with some other
operations. The JLP package provides the following tools for this.

 JLP 97

Replacing terminal input

If JLP gets command ownread, then the terminal input (reading from unit n5) is
replaced by call to subroutine ownrea:
**=ownrea=== file jlpint.src===================================
 subroutine ownrea(line)
* An example of own input function that replaces terminal input.

The provided template for ownrea just reads the command line from the terminal.

The command ownrea affects only reading from the terminal, i.e., include command
can still be used to get input from files.

Command ownrea will toggle, i.e., giving another ownrea terminal input is used
again.

Replacing buffer output

The output buffer provides an way to replace terminal output. If printlevel is set to
zero, and buflevel is given a positive value, then nothing is printed to the terminal
and all output goes to the output buffer. The output buffer can then be handled in the
main program after returning to the main program after command end, or in the
subroutine buff after giving the control to subroutine buff by command buff. If the
buflevel is given a negative value, then instead of putting a line into the output
buffer, JLP calls subroutine ownwri:
*=ownwri=== file jlpint.src ================================
 subroutine ownwri(line)
* An example of own output function replacing buffer output.

With ownwri the output can be handled line by line. It may be easier to make input
and output co-operate smoothly, if entries ownrea and ownwri are put to the same
subroutine.

A possible use for ownwri is to get better scrolling properties on the screen than
obtained by unqualified writing to the standard terminal unit.

4.12 Adding Own Commands to JLP

The user may add two commands to the JLP commands as follows (on request
arrangements for more commands can be easily made). The names of commands can be
given by giving proper values for JMAKE options $OWN1 and $OWN2 in jlp.par. Let us
call the commands own1 and own2 (as is the default given in jlp.par). When these
commands are encountered, JLP calls user subroutines own1 and own2:
*=own1=== file jlpint.src ===

98 Part 4 Setting Up the Working Environment
 subroutine own1(inp,errors)
* Subroutine template for own command given in OWN1 option in jlp.par.
* Currently includes template for report writer replacing
* sched command and showing how to access c- and x-data.
**
* INPUT: inp = the whole command line (extra blanks are removed)

*=own2=== file jlpint.src ===
 subroutine own2(inp,errors)
* Subroutine template for own command given in OWN2 option in jlp.par.

These subroutines get the whole command line as the input, so all command options
etc. can be implemented by interpreting the command line properly. As all JLP global
parameters and variables can be accessed using 'needs:' construction of JMAKE, the
user may do whatever she/he wants in these subroutines.

 JLP 99

5. ERRORS AND TROUBLESHOOTING

5.1 Syntax Errors

If JLP encounters an illegal command in batch mode, the program terminates (returns
to the main program) with the proper error message. In interactive mode (default) all
open include files are closed, the error message is printed, and the control is given to the
input terminal. Note that only the significant part of a command is interpreted, and e.g.
'printleuvel 2' does not cause an error.

JLP prints warning messages in case no error has occurred but the result of a JLP
command may be different than the user may expect. For instance, if JLP is asked to
solve a problem without an objective function, JLP will print:
W no objective variable, finding feasible

The author is expecting feedback from the users to improve the error and warning
messages, and how to deal with error situations.

5.2 Dimensions of Vectors

JLP tries to check the ranges of character substrings and array indexes. If an overflow
would occur, JLP prints an error message telling what parameter should be increased.
For example the error message for parameter MAXNX is:

PAR increase MAXNX

The parameter MAXNX in file jlp.par should then be increased and JLP rebuilt as
described in Chapter 4.1. It is possible to continue the current session with other
commands. However, if the error message comes in form:
*F*PAR* increase MAXSPL

then the data areas are out of order, and the current session can be continued only after
init. It is recommended that JLP source files are compiled without range checking
option, unless the user suspects that JLP fails in the range checking (which is, in theory,
possible). Programs compiled without range checking are smaller and faster.

100 Part 5 Errors and Troubleshooting

5.3 Problems in the Optimization

A major difficulty in a nontrivial numerical algorithm is that unavoidable rounding
errors may prevent the algorithm from finding the solution within a reasonable
accuracy. Even if JLP has solved all the test problems, there are certainly problems
where JLP fails. In case of difficulties, and before consulting the author, the user should:

i) use 'printlevel 9' to get all the diagnostic output that might explain the cause of the
problem,

 ii) try to solve modified problems, e.g., by adding a constraint at a time, to see when
the problems arise.

iii) modify parin parameters tole, invert and/or wmin (see section 2.7.4).

5.3.1 Degeneracy due to linear dependency

 A basic variable in a linear programming problem is called degenerate if its value is
zero. Degeneracy can cause unstable behavior. There are two types of degeneracy
problems that have been addressed in the design of JLP.

First degeneracy situation arises when some constraint rows are linear combinations of
others. An example:
> prob
> income.2-income.1=0
> income.3-income.2=0
> income.4-income.3=0
> income.5-income.4=0
> income.5-income.3=0
> npv.0 max
> /

Now the last constraint 'income.5-income.3' is a linear combination (sum) of the
two previous constraints. JLP keeps all constraints (including equality constraints)
nonbinding as long as they are satisfied up to the tolerance computed from the
minimum and maximum value of each x-variable. Thus in the above sample problem
the constraint for 'income.5-income.3' will not become binding, and following
solution is obtained:

 JLP 101
row value shadow lower upper
 price bound bound
__
 1) income.2-income.1 0.00000000 -0.2052712 0.000000 L
 2) income.3-income.2 0.00000000 -0.2147269 0.000000 L
 3) income.4-income.3 0.00000000 -0.0895401 0.000000 L
 4) income.5-income.4 0.00000000 -0.0410396 0.000000 L
 5) income.5-income.3 0.00000000 0.00000000 0.000000
 6) npv.0 33459072.7 1.00000000 max

The order of the last two constraints were then changed.
> prob
> income.2-income.1=0
> income.3-income.2=0
> income.4-income.3=0
> income.5-income.3=0
> income.5-income.4=0
> npv.0 max
> /

The last constraint is nonbinding also this time, and following results are obtained:
__
row value shadow lower upper
 price bound bound
__
 1) income.2-income.1 0.00000000 -0.2052712 0.000000 L
 2) income.3-income.2 0.00000000 -0.2147269 0.000000 L
 3) income.4-income.3 0.00000000 -0.0485004 0.000000 L
 4) income.5-income.3 0.00000000 -0.0410396 0.000000 L
 5) income.5-income.4 0.00000000 0.00000000 0.000000
 6) npv.0 33459072.7 1.00000000 max

Thus the results look different depending on the order of constraints. Note the relations
between the shadow prices of this and the previous problem: -0.0485004-0.0410396= -
0.089540. The shadow prices for x-variables look the same in both cases.

If the computed tolerance range for constraints is too small, then linear dependencies
may remain undetected, and JLP may behave in an unstable way, and may or may not
find the solution. If the tolerance range is too wide, then JLP will get a reasonable
solution but the solution is not exact in the sense that a constraint that should be
binding is not. See section 2.7.4 for how to change the default tolerance.

5.3.2 Degeneracy when lower bound = minimum

Suppose that the simulated alternatives contain alternatives with herbicide treatments
(x-variable herbicide >0) , and those alternatives are economically favorable. If we
set a constraint 'herbicide=0' then this constraint will become binding and will get a
nonnegative shadow price. Thus the algorithm takes a schedule with herbicide>0 as
a basic schedule, even if the weight of such a schedule is zero. (Earlier versions of JLP
had difficulties in finding the solution in this case.)

A faster way to implement such constraints would be to reject unacceptable alternatives
in xtran- transformations:

102 Part 5 Errors and Troubleshooting
xtran
if herbicide>0 then reject
/

If a constraint is forced this way, then no shadow price is obtained.

 JLP 103

6. LINEAR PROGRAMMING ALGORITHM

In this part, the mathematical background of JLP algorithm is briefly described. The
domain structure has effect only on the way different variables are accessed and not in
the basic optimization algorithm as such. Thus the algorithm is described without a
reference to the domains. The realization of the domain structure is then described at
the end of the part. The reader is assumed to be familiar with basic linear
programming concepts (see e.g. Luenberger 1973).

6.1 Problem Formulation

Let us first restate the problem definition from Chapter 1.2 in a slightly different form
(see Chapter 1.2 for interpretation of the symbols)

Max or Min z0 � a0 � x � b0 � z (6.1)

subject to:

ct � at � x � bt � z � Ct , t � 1,..., r (6.2)

��

xk � xk
ijwij � 0

j�1

ni

�
i�1

m

� , k � 1,�, p (6.3)

��

wij
j�1

ni

� � 1, i � 1,�,m (6.4)

wij � 0 for all i and j (6.5)

zk � 0 for k � 1,... ,q (6.6)

Vectors z, and x are:

x � x1 ... xp�
�

�

�

 (6.7)

z � z1 ... zq�
�
 (6.8)

Constraints (6.2) can be written in matrix form as:

c � Ax � Bz � C (6.9)

104 Part 6 Linear Programming Algorithm

The problem is easier to understand (and define) if the constraints including the
aggregate xk-variables and their definitions are presented separately, as above. An
equivalent problem would be obtained by substituting the definitions of x-variables
directly into the objective (6.1) and constraints (6.2) (as is the formulation of Dantzig
and Van Slyke 1967). Note that without a loss of generality we might assume that on
each row t all coefficients atk are zero except possibly one coefficient is one. For
instance, if some row t contains

2 x2 +3 x2

then this linear combination can be replaced by a new variable xp+1 for which we
define:

xp�1
ij

� 2x2
ij
� 3x2

ij

It is more natural for the user to define problems without artificial new x-variables, but
computationally a more efficient algorithm is obtained by making new variables for
linear combinations of x-variables. These variables are called 'temporary x-variables' in
JLP output. The mathematical basis of JLP is here described assuming that there can be
several x-variables on each row. It is also indicated how computations will simplify if
there can be only one x-variable on each row without a coefficient (i.e. with coefficient
1). This formulation is called one-x formulation.

Any standard linear programming algorithm can be used to solve the problem, at least
after writing any constraint t of form (6.2) as two separate constraints, one for the lower
bound and the other for the upper bound, or as an equality constraint in case ck=Ck.
However, to solve the problem efficiently, the special features of the problem should be
taken into account.

JLP applies the following techniques:

(i) Generalized upper bound technique (see Dantzig and Van Slyke 1967) is used to
handle the area constraints (6.4).

(ii) Using the revised simplex method (used also by Dantzig and Van Slyke 1967), the
algorithm makes small local steps, i.e. without having the whole tableau in the
memory.

(iii) The basic unit in the optimization is one treatment unit, thus the algorithm applies
a kind of decomposition technique.

(iv) An upper bound technique is used to handle simultaneously both the lower and
upper bound.

 JLP 105

6.2 Generalized Upper Bound Technique

6.2.1 Basic idea: key variables

The generalized upper bound technique is the most important special feature of the
algorithm. The number of constraints in the problem is m + 2r, and generally m is large
and r is small. As the speed and memory requirements of a linear programming
computer program depend mainly on the number of constraints, the original problem
may take quite much time and memory. Applying the generalized upper bound
technique for the area constraints and ordinary upper bound technique for the upper
bounds, the effective number of constraints is r.

The basic idea of the generalized upper bound technique is that the area constraint (6.4)
for treatment unit i

wij
j�1

ni

� � 1

will be automatically satisfied if we select from each unit i a schedule J(i), and write
 in terms of the other weights: wiJ(i)

wi J (i) � 1 � wij
j� J(i)
� (6.10)

Constraint (6.3) defining variable xk, k=0,...p can then be written without variables w : iJ(i)

xk � xk
ijwij � xk

iJ(i) 1 � wij
j �J (i)
�

��

��
��

��

��
	�

j�J (i)
�

�

��
��

�

��
��

i�1

m

� � 0 (6.11)

or

xk � xk
ij
� xk

iJ(i)� �wij � xk
iJ(i)

i�1

m

�
j�J (i)
�

i�1

m

� (6.12)

The area constraints (6.4) can be dropped from the problem, since (6.10) automatically
guarantees that they are satisfied. However, for each unit i, the nonnegativity
constraint w will become: i J (i) � 0

��

wij
j�J (i)
� �1, i � 1,�,m (6.13)

106 Part 6 Linear Programming Algorithm

Thus the number of constraints (nonnegativity constraints are not counted) is the same
as in the original formulation, the area constraints were just changed into constraints
(6.13) . However, if the schedules J(i) are chosen at each stage of the solution process so
that wiJ(i) would be a basic variable (i.e. wiJ(i) >0), then these new constraints are never
active. Thus the working basis can be formed without having basic variables
corresponding to these constraints.

The problem definition uses inequality constraints. As the matrix algebra of linear
programming is based on equalities, artificial surplus or slack variables are usually
introduced to make inequalities formally into equations. JLP treats nonbinding
constraints without surplus and slack variables by adjusting the dimension of the basis
matrix according to the number of active constraints. This can make the algorithm
faster if there are several nonbinding constraints.

Let us first describe how the optimization proceeds at any stage after finding a feasible
solution. How to obtain a feasible solution is described later. A stage of optimization
can be described as follows:

For each unit i there is an key schedule J(i) for which wiJ(i) >0. Variables wiJ(i) ("key
variables" of Dantzig and Van Slyke 1967) are implicit basic variables they are not
included in the working basis. Let s denote the sum of x-variables over the key
schedules, i.e.:

s � xiJ (i)

i�1

m

� , (6.14)

where

x ij
� x1

ij .. . xp
ij� �
�
 (6.15)

There are R binding utility constraints, 0 ≤ R ≤ r , for each binding utility constraint t
either the lower bound ct or the upper bound Ct is active. Let us denote the R-vector of
the active bounds by cb. Assume for simplicity that the binding constraints are the R
first.

Correponding to the R binding utility constraints, there are R basic variables among w-
and z-variables (these variables form the "working basis" of Dantzig and Van Slyke
1967). Let the number of basic basic z-variables be Q. Assume for simplicity that the
basic z-variables are the Q first. Let P =R–Q be the number of basic w-variables (in
addition to the implicit basic variables w). These w-variables are called explicit basic

w-variables, and the corresponding schedules are called explicit basic schedules. Let us
index the explicit basic schedules by u, and denote the unit and schedule for explicit

i J (i)

 JLP 107

basic schedules by ij(u), u=1,...,P. Note that there can be more than one explicit basic
schedule in the same treatment unit. Denote further:

w � wij(1) , .. . ,wij (P)� �
�
 (6.16)

 du � x ij (u)
� xiJ(u) , u �1,.. ., P , (6.17)

D � d1 . .. dP� �. (6.18)

Thus the current value of x is:

x � s � Dw (6.19)

 Let us decompose A, B, b0, and z separating binding and nonbinding constraints and
basic and nonbasic variables:

z �

zb

zn

��

��
�� ��

��
, where zn � 0 (6.20)

b0 �
b0b

b0n

��

��
�� ��

��
 (6.21)

A �
A b

A n

��

��
�� ��

��
 (6.22)

B �
Bbb Bbn

Bnb Bnn

��

��
�� ��

��
. (6.23)

The current value of the objective function is :

z0 � a0 � x � b0 � z � a0 � s � a0 �Dw � b0b � zb , (6.24)

where the current values of w and zb can be solved using the assumption that the R first
utility constraints are binding:

 Ab x � Bbbzb � cb , or (6.25)

 Abs � AbDw � Bbbzb � cb , or (6.26)

 AbDw � Bbbzb � cb - Abs , or (6.27)

AbD Bbb� �

w
zb

��

��
�� ��

��
� cb - Abs , or (6.28)

w
zb

��

��
�� ��

��
� AbD Bbb� ��1 cb - Abs� �. (6.29)

108 Part 6 Linear Programming Algorithm

The matrix AbD Bbb� � is the current (working) basis matrix of the problem.

6.2.2 Entering variable

There can be three different possibilities to improve the current solution:

i) A new schedule j for some unit i enters into the solution (more precisely: weight wij
enters into the the solution).

ii) A nonbasic z-variable enters into the solution

iii) A binding constraint becomes nonbinding (the slack or surplus variable of a binding
constraint enters into the solution).

 New schedule enters

Let us consider what will happen if schedule j for some unit i enters into the solution
with weight �. Let w+ denote the new values of the weights of the current explicit basic
schedules, let zb+ be the new values of the basic z-variables, and let d* denote the
difference:

d*
� xij

� xiJ(i) (6.30)

New value of the x-vector is denoted as x+ and is obtained as:

 x�
� s � Dw

�
� �d* (6.31)

Binding constraints remain satisfied if (see Eq. 6.27):

AbDw
�
� �Abd*

� Bbbzb� � cb � Abs (6.32)
or

AbD Bbb� �
w

�

zb �

��

��
�� ��

��
� cb � Abs � �Abd* (6.33)

Hence:

w
�

zb�

��

��
�� ��

��
� AbD Bbb� ��1 cb � Abs � �Abd*� � (6.34)

or

w

�

zb�

�� ��
��
�

w
zb��

�� ��

��
�� ��

��
� � AbD Bbb� ��1Abd* (6.35)

Denote

 JLP 109

H � AbD Bbb� ��1
�

Hx

Hz

��

��
�� ��

��
, (6.36)

where Hx contains P first rows and Hz Q last rows of H.

Then

x
�
� s � Dw

�
� �d*

� x � � �DHxAb � I� �d* , and (6.37)

z
�
� zb � �HzAbd* (6.38)

Thus the new value of the objective function is

z0� � z0 � � a0 � �DHxAb � I� �� bb �Hz Ab� �d* , or (6.39)

z0� � z0 � �v x �d
* , where (6.40)

vx � � a0 ��vc �Ab , where (6.41)

vc � � a0 �DHx � bb �Hz � a0 �D bb �� �H (6.42)

is the vector of shadow prices of the active constraints (more precisely, this vector is the
shadow price vector at the solution).

If vx �d
*
� 0 , or vx � x

ij
� vx �x

iJ(i) , then the solution will improve if schedule j is put into
the solution. Thus the value of a schedule in a unit can be computed using the
marginal prices of x-variables. A nonbasic schedule can enter into solution if its value is
greater than the value of the key schedule.

In the one-x formulation all elements on each row of Ab are zeros except possibly one
element is one. Thus the computations simplify considerably. Each row of matrix A
needed in the above formulas is either zero or is obtained by picking a row of D. In
computing the pricing vector vx, we note that a0 is either zero or contains one in some
position, and postmultiplication of vector vc by Ab just adds the elements indicated by
the columns of Ab. Thus the total number of computations needed to compute vx is
very small.

bD

New z-variable enters

Let us consider what will happen if a new z-variable, e.g. zQ�1 enters into the solution.

Let � be the new value of zQ+1 . Let denote the coefficient (column) vector of zQ+1 in
the binding constraints, and let b denote the coefficient of

bb
*

*
0 zQ�1 on row 0. The binding

constraints remain satisfied if:

110 Part 6 Linear Programming Algorithm

 A . (6.43) bDw
�
� Bbbzb� � �bb

*
� cb � Abs

We see that the equation is otherwise as Eq. (6.32) but A is replaced by b . Thus bd*
b
*

w
�

zb�

��

��
�� ��

��
�

w
zb

��

��
�� ��

��
� � A bD Bbb� ��1bb

* . (6.44)

In the case of the entering schedule, we had to take into account the direct effect of
entering schedule on the x-variables. Now the values x-variables are changed only
through the changed weights of schedules in the basis. Thus

x
�
� s � Dw

�
� x � �DHxbb

* , and (6.45)

zb� � zb � �Hzbb
* (6.46)

The new value of the objective function is

z0� � z0 � �b0
*
� � a 0 �DHx � bb �Hz� �bb

* , or (6.47)

 z0� � z0 � � b0
*
� v c �bb

*� �, where (6.48)

The shadow price vector vc is given in (6.42).

Thus the objective function will increase if b . If b then
 is the reduced cost that would result if the z-variable would be forced to the

solution.

0
*
� vc � bb

*
� 0 0

*
� vc � bb

*
� 0

vc � bb � b0
* *

 Slack or surplus variable enters

Assume that for some constraint t the upper bound Ct is binding and the lower bound
ct is strictly less than Ct . Then it may happen that when dropping the constraint, and
letting the value of the row to decrease, the objective function may increase. An
equivalent description for this is that the so called slack variable of constraint t enters
to the solution. (JLP does not actually use slack and surplus variables, but they are
useful for describing the situation when a binding constraint becomes nonbinding.)
Thus the above analysis for the entering z-variable applies. The slack variable of
constraint t is a z-variable so that

a t � x � bt � z � slackt � Ct (6.49a)

i.e. it has coefficient one on row t and zero on other rows. The objective function can be
inreased by relaxing the constraint t if element t of v is negative. c

 JLP 111

Similarly, if constraint t is at the lower bound ct and ct <Ct , we should consider
entering the surplus variable for constraint t into the solution. The surplus variable of
constraint t is a z-variable so that

a t � x � bt � z � surplust � ct (6.49b)

i.e., it has coefficient -1 on row t and zero on other rows. Thus the objective function
can be inreased by relaxing the constraint t if element t of v is positive. c

6.2.3 Leaving variable

When a new variable enters into the solution, the objective function increases in
proportion to the new value � of the entering variable. The new value will be increased
until some basic variable becomes zero. That variable then leaves the basis. Three cases
may occur:

(i) The weight w of the key schedule of some unit i (i may or may not be the same
unit for an entering schedule) becomes zero. Note that w is not formally a basic

variable of the modified problem. This is equivalent to the case that an implicitly
treated constraint becomes binding.

iJ(i)

j�

iJ(i)

w 1ij
J (i)
� �

(ii) The weight w of an explicit basic schedule will leave the basis. ij

iii) A basic z-variable leaves the basis

(iv) A nonbinding utility constraint t, R<t≤r will become binding (at lower or upper
bound).

To determine which of the three cases occurs, we need to compute the critical value �*
in each case. Let us first present in a unifying formalism how the w-, z-, and x-
variables change when a new variable enters:

w
�
� w � �rw (6.50)

x
�
� x � �r x (6.51)

z
�

� z � �rz (6.52)

where

112 Part 6 Linear Programming Algorithm

rw �

�H xAbd* , if a new schedule enters
�H xbb

* , if a new z - variable enters
tth column of � Hx if surplus variable of constraint t enters
tth column of Hx if slack variable of constraint t enters

��

��
��

��
��

 (6.53)

rx �

�DHxAb � I� �d*, if a new schedule enters
�DHxbb

* , if a new z - variable enters
t th column of � DHx if surplus variable of constraint t enters
t th column of DHx if slack variable of constraint t enters

��

��
��

��
��

 (6.54)

rz �
rzb

rzn

��

��
�� ��

��
, where (6.55)

rzb �

�HzAbd* , if a new schedule enters
�Hzbb

* , if a new z - variable enters
tth column of � Hz if surplus variable of constraint t enters
tth column of Hz if slack variable of constraint t enters

��

��
��

��
��

 (6.56)

and all elements of rzn are zero except if a z -variable enters then the corresponding
element is one (e.g. if zQ+1 enters then first element of rzn is one).

We need then consider the following cases:

The weight of a key schedule becomes zero

 The weight of a key schedule becomes zero when the weights of basic schedules
of unit i sum up to one, i.e., the implicit constraint becomes binding.

wiJ(i)

w 1

w 0

ij
j�J (i)
� �

Denote by Ti the index set of explicit basic schedules from treatment unit i (i.e., j�Ti
means that and j≠J(i)). Let ij � rwij denote the corresponding element of r . w

Let us first concider the case that the entering variable is not weight wij in unit i. We
note first that the weight w cannot become zero if there are no explicit basic
schedules in unit i (i.e., Ti is empty). If there are explicit basic schedules in unit i (i.e. Ti
is not empty), then the weights of the explicit basic schedules sums up to one if

iJ(i)

wij � �
*rwij� �

j�Ti

� �1 , or (6.57)

�
* � 1� wij

j�Ti

�
��

��
��

��

��
	� rwij

j�Ti

� (6.58)

 JLP 113

If the entering variable is weight wij in unit i, the weights of the previous explicit basic

schedules and the weight of the entering schedule sum up to one if

wij � �
*rwij� �

j�Ti

� � �
*
� 1 , or (6.59)

�
* � 1� wij

j�Ti

�
��

��
��

��

��
	� 1
 rwij

j�Ti

�
��

��
��

��

��
	� (6.60)

If there were no explicit basic schedules in the unit of the entering schedule, then the
above equation says simply that w becomes zero if �*=1. iJ(i)

An explicit basic schedules leaves

The weight of an explicit basic schedule, w , becomes zero, if ij rwij <0 and

 w , or (6.61) ij � �
*rwij � 0

�
*
� �wij rwij (6.62)

A basic z-variable leaves

A basic z-variable zbk becomes zero if rzk � 0 and

 zbk � �
*rzk � 0 , or (6.63)

�
*
� �zbk rzk (6.64)

A nonbinding constraint becomes binding (a slack or surplus variable leaves)

Let Zt denote the current value of a nonbinding constraint row t:

Zt � a t �x � bt �z , and (6.65)

 ct � Zt � Ct . The new value of the row, denoted as Zt +, will be

Zt� � Zt � � at �rx � bt � rz� �. (6.66)

If a t �r x � bt �rz � 0 , the constraint will reach the lower bound ct when � gets value

�
*
� ct � Zt� � at � rx � bt �rz� �. (6.67)

Similarly, if a t �r x � bt �rz � 0 , the constraint will reach the upper bound Ct when �
gets value

114 Part 6 Linear Programming Algorithm

�
*
� Ct � Zt� � at �rx � bt � rz� �. (6.68)

Note that the elements of rz corresponding to nonbasic z-variables are zero except for
an entering z-variable. The smallest value of �* computed in Eqs. 6.58, 6.60, 6.62, 6.64,
6.67, and 6.68 will be the new value of the entering variable (weight wij, z-variable,
slack/surplus variable) and it determines which is the leaving basic variable (a key
variable, an explicit basic variable, a z-variable, or an implicit slack/surplus variable of
a nonbinding constraint). Thereafter we need to update the problem description, i.e. the
list of key schedules, the list of explicit basic schedules, and s, D, Bbb, H, w, z, x, vc, and
vx.

6.2.4 Updating step

There are three different types of entering variables (treating slack and surplus
variables as one category), and four different types of leaving variables. Thus there are
twelve different combinations. The overall updating step can be combined by applying
the following operations:

The weight of a key schedule becomes zero

The updating steps are simple, if weight w enters the solution and the weight w of

the key schedule of the same unit i leaves the solution, and there are no explicit basic
schedules for the unit (i.e., w will become 1 and w was 1). We first update s (:=

denotes assignmet operation):

ij iJ(i)

ij iJ(i)

s:� s � xiJ (i)
� xij (6.69)

Then we set J(i) := j in the list of key schedules. D, Bbb, H, vx , and vc will remain the
same. New w, z, and x can be computed using Eqs. (6.29) and (6.19).

If becomes zero for a unit i having explicit basic schedules, then the updating can

be done as follows. We select any explicit basic schedule j' in unit i to become the new
key schedule. Vector s is updated similarly as in (6.69). If there are other explicit basic
schedules in the unit (in addition to the new key schedule), the columns of D for other
schedules in the unit are changed to correspond to the new key schedule. The inverse H
of the basis can be updated accordingly by standard pivot operations. J(i) is set to be j'.
Thereafter we proceed as if it where the column of D corresponding to the schedule j'
that is leaving the basis.

wiJ(i)

 JLP 115

 A column of the basis is changed

A colum of the basis is changed when the entering variable is either w- or z-variable and
the leaving variable is either w- or z-variable. If the leaving variable is the weight w)

of the key schedule (i.e. an implicit basic variable), it was described in the previous
section what steps are taken to transform the situation to correspond the case that the
leaving variable is wij of an explicit basic schedule.

iJ(i)

If the leaving variable is wij for an explicit basic schedule, the corresponding column of
D is dropped. If the leaving variable is a z-variable, then the corresponding column of
Bbb is dropped. If the entering variable is a z-variable zk then the coefficient vector

��

b1k

b2k

�

bRk

��

��

��
��
��
��
��

��

��

��
��
��
��
��

is included in Bbb. If the entering variable is w then vector d is joined to

matrix D. Thereafter the inverse of the basis H is updated using standard pivot
operations. For computing the inverse, the basis is treated as a single matrix whose
column is changed. Logical separation between Bbb and D is done with link lists.

ij
*
� xij

� xiJ(i)

 A row is added to the basis

If either a z- variable or wij of an explicit basic schedule is entering the basis and a new
constraint t ,

ct � a t � x � bt �z � Ct (6.70)

 t>R, becomes active, then the dimension of the basis is inreased by one. Then
coefficient rows at´ and bt´ that has been in the nonbasic (lower) part of A and B in
(6.22) and (6.23) are moved to the basic (upper) part. If the entering variable is a z-
variable zk then the corresponding column vector of coefficients is included in Bbb. If
the entering variable is w then vector d is joined to the matrix D. Thus
the basis matrix

ij

D Bbb

* ij iJ(i)

A
� x � x

b� � is updated by adding both a new row and a new column

to it. The inverse basis H can be updated using the matrix formula (CRC ... 1981)

c ��d
b A
��

��
�� ��

��

�1

�
h h ��d A�1

	hA�1b A�1
 hA�1b ��d A�1

��

��
�� ��

��
, (6.71) ��

where

h � 1 c � ��d A�1b� � (6.72)

116 Part 6 Linear Programming Algorithm

A row is dropped from the basis

If the implicit slack or surplus variable of constraint t is entering the solution (a binding
constraint t becomes nonbinding), and either a z- variable or wij of an explicit basic
schedule is leaving the basis, then we reduce the dimension of the basis by removing a
column and a row. If wij is leaving the solution the corresponding column of the
matrix D is dropped. If the leaving variable is a z-variable, then the corresponding
column of Bbb is dropped. Thereafter the row t is classified as a nonbinding both in
matrix A and B. The inverse of the basis is updated using the matrix formula (this can
be derived from formulas given in CRC ... 1981):

If
B c
��d e

��

��
�� ��

��

�1

�
X y
��z u

��

��
�� ��

��
 (6.73)

then
B�1

� X �
1
u y �z � (6.74)

Two rows of the basis are changed

If the implicit slack or surplus variable of constraint t is entering the solution (a binding
constraint t becomes nonbinding), and the implicit slack or surplus variable of an other
constraint is leaving the basis, then we interchange the status of the corresponding
rows in matrices A and B. The inverse of the basis A D Bb bb� � is then obtained by

standard (row) pivot operations.

Computations after changing the basis

After updating s, Ab, D, Bbb and H, new values of w, z, x, vc and vx are computed using
Eqs. 6.29. 6.19, 6.42 and 6.41. Then JLP tries to improve the solution by entering a new z-
variable, a slack/surplus variable of a binding constraint or a schedule.

6.3 Optimization Algorithm

The preceeding chapters described briefly the mathematical basis of the generalized
upper bound method as applied in JLP. This chapter describes some properties of the
implementation of the method.

6.3.1 Minimization

The algorithm is described above for the case where we want to maximize the objective
function. If the problem is defined initially as a minimization problem, an equivalent

 JLP 117

maximization problem is obtaint by changing the signs of coefficients on the objective
row. The signs needs to be taken into account only in Eqs. 6.42, 6.41 and 6.48.

6.3.2 Summary of the algorithm

The following symbols are used in addition of symbols defined in Chapters 6.1 or 1.2:
g = the current (temporary) objective row (after finding feasible g=0)
Ln = list of nonbinding constraints
L:=L U {t} means that t is added to the list L

Finding a feasible solution

JLP finds a feasible solution by maximizing or minimizing each constraint row until it
will reach the feasible range [ct, Ct]. In the following it is summarized how the
algorithm is used to find the feasible solution.

Initialization: Get lower and upper bounds, and get for each unit the key schedule (for
first problem with the data, key schedules are just different schedule numbers,
thereafter key schedules are obtained from the previous solution), compute s (which is
also the initial value of x) using key schedules.

0. Set g:=0; Ln:={ }

1. If g=r , then EXIT, FEASIBLE FOUND
else
 g:=g+1; Ln:= LnU {g};
If constraint g is satisfied go to 1

2. Find an entering variable when row g is maximized (a) or
minimized (

g �x � bg � z � c
g

a �x � b � z �g g C
g
). If no variable can enter, then EXIT, PROBLEM

INFEASIBLE

3. Find the leaving variable, make one optimization step.

4. If constraint g is satisfied, then go to 1, else go to 2

The reason for adding constraint g into the list of nonbinding constraints in same time
as we begin to maximize or minimize row g is to prevent the possibility that the row
that is smaller than the lower bound (greater than the upper bound) and will become
greater than the upper bound (smaller than the lower bound) in one optimization step.
The algorithm became more efficient than the basic version described above with the
following modification. Each time a new constraint g is started, all constraints g+1,....,r

118 Part 6 Linear Programming Algorithm

are inspected if they are already in the feasible range, and satisfied constraints are
added to the list of nonbinding constraints to prevent them to become unsatisfied when
making constraint g feasible. Also such option to the algorithm was tested that
temporary lower or upper bounds were used for constraints g+1,....,r to prevent them
deviate more from their feasible ranges. No clear speed advantage was found, and this
option is no more available.

Finding optimal solution

After finding a feasible solution, the optimum value for row g=0 can be found simply as
follows:

1. Find an entering variable. If no variable can enter, then EXIT, SOLUTION.
2. Find the leaving variable, make one optimization step.
3. Go to step 1.

There are different possible stategies for finding the next entering variable. JLP is using
the following one.

How JLP selects the entering variable

A linear programming algorithm has found the solution, if the current solution cannot
be increased by any entering variable. If several variables can enter, the solution will be
found if any strategy is used to select the entering variable. Selection strategy affects of
course the speed of the algorithm. JLP selects the entering variable initially and after
each change of the basis according to the following priority order (i.e. the entering
variable is selected from the highest possible category):

i) z-variables
ii) Slack or surplus variables
iii) Weights of schedules.

If several z-variables (slack/surplus variables) can enter, then the z-variable
(slack/surplus variable) resulting in highest marginal change in the objective function
is chosen. Units are visited in order when it is checked if a weight wij can enter into the
solution. The values of all schedules in a unit are computed, and schedule with largest
value is entered into the solution if its value is greater than the value of the key
schedule. If a weight wij enters, then next time JLP computes prices of schedules it
starts from unit i+1. If i+1 is greater than the number of units, then the first unit will be
the next unit. If no schedule can enter in the unit where last weight entered the
solution, then it is known that the optimum has been found.

 JLP 119

If, after entering wij into the solution, JLP would return to the same unit i for calculating
the prices of schedules, JLP would find the optimum for the current unit. In the
language of decomposition algorithms: we would find the optimum for a subproblem.
In test problems, it was found slightly more efficient to go to the next unit i+1 after
entering a weight wij .

If there are no x-variables in the problem, then JLP just never reaches the phase iii)
where prices of schedules are computed.

6.4 Dual Analysis

It may give insight to the problem if we analyze how the primal problem and the dual
problem are related. This analysis will also indicate how to desribe marginal properties
of the solution.

6.4.1 Primal problem

Let us first rewrite the 'standard' problem formulation by separating the lower bound
and upper bound constraints:

Max z0 � a0 � x � b0 � z (6.75)

subject to:

��

atk xk
k�1

p

� � btkzk
k�1

q

� � Ct , t �1,�,r (6.76)

��

� atk xk
k�1

p

� � btkzk
k�1

q

� � �ct , t �1,�,r (6.77)

��

xk � xk
ijwij � 0

j�1

ni

�
i�1

m

� , k � 1,�, p (6.78)

��

wij
j�1

ni

� � 1, i � 1,�,m (6.79)

wij � 0 for all i and j (6.80)

zk � 0 for k � 1,... ,q (6.81)

120 Part 6 Linear Programming Algorithm

6.4.2 Dual problem

The dual problem is first defined using new symbols for the dual variables. It is then
indicated at the end of the chapter how the dual variables are related to quantities
computed when the primal problem is solved.

 Let �t, k=1,...,r be the shadow prices for upper bound constraints (6.76), let �t, t=1,...,r
be the shadow prices for lower bound constraints (6.77), let �k, k=1,...,p, be the shadow
prices of constraints (6.78), and let �i, i=1,...m be the shadow prices of constraints (6.79).
The dual problem is then:

Min Ct
t�1

r

� �t � ct
t�1

r

� �t � 0� k
k�1

p

� � � i
i�1

m

� (6.82)

or after dropping the third term (which is zero)

Min Ct
t�1

r

� �t � ct
t�1

r

� �t � � i
i �1

m

� (6.83)

subject to:

atk
t�1

r

� �t � �t� �� � k � a0k , k � 1,... , p (6.84)

btk �t � � t� �
t�1

r

� � b0k , k � 1,. .. ,q (6.85)

� xk

ij

k�1

p

� �
k
� �i � 0, for all i and j (6.86)

�t ≥ 0 for t=1,...,r (6.87)

�t ≥ 0 for t=1,...,r (6.88)

 Because (6.78) and (6.79) are equality constraints, the corresponding dual variables �
and � are free variables. Because xk-variables are free in the primal problem, the
corresponding constraints in the dual (6.84) are equality constraints.

Optimization of the objective variable of the primal problem can be described as a
process of finding a feasible solution for the dual problem. For instance, if the pricing
rule (6.40) tells that a schedule j' in unit i could be included in the solution, this
indicates that constraint (6.86) in the dual problem is not satisfied. After the schedule
(precisely weight wij) enters the solution of the primal, the constraint is satisfied.

 JLP 121

6.4.3 Relations between primal and dual problems

Let us then consider what kind of relations there are between shadow prices and
variables in the primal problem in the optimal solution.

Shadow price of an x-variable

For an original utility constraint t either the lower bound ct or the upper bound Ct is
active. Thus either �t=0 or �t=0 or both are zero. Let us write that

�t = �t – �t . (6.89)

Then the shadow prices of x-variables can be obtained from (6.84) :

� k � a0k � atk
t�1

r

� �t , k � 1,. .., p (6.90)

Shadow price of a unit

Constraint (6.86) can be written as:

� i � xk

ij

k�1

p

� � k , for all i and j (6.91)

Equality holds, if the weight wij in the primal problem is a basic variable (wij>0), i.e.,
the shadow price of a unit is equal to the value of any basic schedule calculated using
the shadow prices of the x-variables. Multiplying with wij we get an equality for each
wij :

wij�i � wij xk

ij

k�1

p

� � k , for all i and j (6.92)

If add up over all all schedules in unit i, we get

� i � xk

i

k�1

p

� � k , for all i (6.93)

where

xk
i
� wij

j�1

ni

� xk
ij . (6.94)

Thus the shadow price of a unit can be calculated using any of the basic schedules

122 Part 6 Linear Programming Algorithm

Reduced cost of a nonbasic schedule

The reduced cost for forcing schedule j in unit i into the solution is:

� i � xk
ij

k�1

p

� � k . (6.95)

Reduced cost for a nonbasic z-variable

Reduced cost for a z-variable zk is obtained from (6.85) and (6.89) as:

btk �t � � t� �
t�1

r

� � b0k � btk�t
t�1

r

� � b0 k , k � 1,..., q (6.98)

Objective function of the dual

The objective function of the dual (6.83) is equal to:

z0 = Ct
t�1

r

� �t � ct
t�1

r

� �t � � i
i �1

m

�

 =

Ct
t�1

r

� �t � ct
t�1

r

� �t � xk
i

k�1

p

� �
k

i �1

m

� (from 6.93)

 =

Ct
t�1

r

� �t � ct
t�1

r

� �t � xk
k�1

p

� �
k
 (6.96)

 = �

Ct
t�1

r
�t � ct

t�1

r

� �t � xk
k�1

p

� a0k � atk
t�1

r

� � t
��

��
��

��

	�

� (from 6.90, use then 6.89)

z0 = xk
k�1

p

� a0k � �t Ct � atk xk
k�1

p

�
��

��
��

��

	�

�

t�1

r

� � � t atk xk
k�1

p

� � ct
��

��
��

��

	�

�

t�1

r

� (6.97)

If there are no z-variables in the problem, then for each t either �t is zero (the upper

bound constraint t is nonbinding) or C is zero, and similarly, t � atk xk
k�1
�
p

� t is zero (the

lower bound constraint t is nonbinding) or is zero. Thus if there are no z-

variables, the last two terms term in (6.97) are always zero.

atk
k�1

p

� xk � ct

 JLP 123

Computation of the shadow prices

The nonzero values of �t, t=1,...,r, i.e., the shadow prices of utility constraints, are
obtained from vector vc in Eq. (6.42). During the solution process vc is always up to
date. If �t>0, then �t = �t, and if �t<0, then �t = –�t.

During the optimization, the shadow prices of x-variables are calculated from the
shadow prices of utility constraints using (6.41). If there are linear combinations of x-
variables on the rows of the problem, these shadow prices are for the temporary x-
variables presenting the linear combinations. After solving the problem, the shadow
prices of the original x-variables can be computed using (6.90).

During the optimization process, values of schedules are computed using (6.40) when it
is determined if a schedule should enter into the solution. The prices are not stored.
After finding the solution, the shadow price of a unit i (precisely, the shadow price of
the area constraint for unit i) can be computed applying (6.91, with equality sign) to the
key schedule of the unit (or to the explicit basic schedules). Thereafter the reduced cost
of a nonbasic schedule can be computed with (6.95).

Formula (6.48) used to check if a z-variable could enter into the solution is essentially
the same as the reduced cost of a nonbasic z-variable given in (6.98). Values computed
with (6.48) are not stored, beacause they are trivial to recompute with (6.98) after
finding the solution.

The fact that the optimization of the primal problem is essentially a r-dimensional
problem (r is the number of the utility constraints) is reflected in the dual problem so
that after knowing the shadow prices of the utility constraints, other dual variables can
be directly computed from them.

6.4.4 Cost of changing values of x-variables

In this section we study the marginal changes in the objective function, if we add a
constraint to the problem that requires that an x-variable xk gets a value slightly
different from the value computed with the weights wij obtained from the optimal
solution. Variable xk may or may not be present in the original problem.

Assume that according to the optimal solution xk has the value:

xk = �k (6.99)

124 Part 6 Linear Programming Algorithm

Assume then that the problem is modified by adding a constraint

xk = �k + �� �������

or a constraint

xk = �k – �, (6.101)

where � is a small positive constant. The constraint (6.100) is called constraint for increase
and the relative change of the objective function (i.e. the change in z0 divided by �) is
called the cost of increase. Similarly, constraint (6.101) is constraint for decrease , and the
corresponding relative change is cost of decrease. If xk was not present in the problem,
then we need to add also a constraint of type (6.78) that defines xk. This constraint is
treated implicitly as before. The changes in the objective function can be analyzed as
follows.

If � is small enough, then a solution satisfying the new additional constraint (6.100) or
(6.101) can be reached in one step from the current optimal solution by entering a new
w-, z- or slack/surplus variable into the basis. As the number of constraints is
increased by one, no variable is leaving the basis. The optimal entering variable can be
chosen by applying the same formulas that are used to determine the entering variable
during the optimization (in this discussion 'entering variable' refers to a variable that
could be entered into the basis, actually no computations are made to change the basis).
If a potential entering variable y gets value �, (�>0) then the change in the objective
function is 	�y)
, where 	�y) is computed with Eq. (6.40) if y is a w-variable (i.e.

), and with Eq (6.48) if y is a z-variable or a slack/surplus variable (i.e.
, or �= ± an element of vc) Because we start from the optimal solution

with less restrictive constraints, ��y) is always nonpositive (when the objective function
is maximized).

� � vx �d
� � b0

*
� v

*

*

v � � a �D b �

c � bb

The corresponding changes in the variable xk can be analyzed using the same formulas
treating xk as the objective function. When computing the price vector

c 0 b� �

xk
ij
� xk

iJ(i)
b

H �D using Eq. (6.42) we note that a is a vector with elements
 and b is zero. The change in xk can be expressed as �(y)���where �(y)�can be

zero, positive or negative.

0

The constraint for increase (6.100) will be satified if �(y)>0 and

�(y)�=�, or (6.102)

�=�/�(y). (6.103)

The objective function will change by the amount:

 JLP 125

��y)
= � � (y) � (y) . (6.104)

Thus the optimal entering variable is such that –� (y) � (y) is as small as possible. Ratio
–� (y) � (y) is the marginal cost of forcing xk to increase.

Similarly, the optimal entering variable for the constraint for increase (6.101) is such
that �(y)<0 and � (y) � (y) is as small as possible. Ratio � (y) � (y) is the marginal cost
of forcing xk to decrease.

If the optimal solution is not unique, then it is possible that cost of decrease or decrease
is zero (i.e., ��y) may be zero for an entering variable y for which �(y) is nonzero). If �k
is the largest value that xk can have, then �(y) is never greater than zero, and the
problem with the additional constraint is infeasible. Thus the cost of increase is not
defined (or can defined to be infinite). Similarly, �k may be the smallest value xk can
have. The JLP printout 'INF' can thus interpreted to mean that the problem with the
corresponding additional constraint is infeasible or that the cost is infinite. Generally,
the cost of increase is different from the cost of decrease. For instance, if the net present
is maximized, then the requirement to decrease cuttings in the first period costs usually
more than the requirement to increase cuttings.

The cost of increase and decrease can be computed also for domain specific x-variables
(even if the domains were not used in the problem). If the entering variable y is a z- or
slack/surplus variable, then ratio � (y) � (y) is the same in each domain.

The shadow price of an x-variable xk tells what is the marginal change of the objective
function, if the problem remains the same and we get an extra unit of xk. If the shadow
price of an x-variable is zero (i.e. the x-variable is present only in a nonbinding
constraint) or an x-variable does not appear in the problem, then a marginal change in
the x-variable does not cause any change in the objective function. The cost of change
gives a different view of the marginal properties of the solution. The main difference is
that the shadow prices are computed assuming that only the right hand sides of
constraints change, while when the cost of change is computed, a constraint is added.

The cost of changing the value of a nonbasic x-variable is easier to interpret than the
cost of change of a basic x-variable (a basic x-variable is an x-variable present on the
objective row or in a binding utility constraint). For a basic x-variable, the additional
constraint for change may intervene with the previous constraints in a way that may be
not seen directly. The mathematical connections between shadow prices and costs of
changing the values of x-variables will not be analyzed further in this report.

126 Linear Programming Algorithm Part 6

6.5 Domains

Domains are not assumed to have any specific structure. For instance domains can
overlap in any manner. Thus it did not seem to be possible to apply decomposition
techniques to take advantage of the domain structure in optimization algorithm as
such. The domains are taken into account in the computation process as follows.

All x-variables are stored in one matrix without domain information. When the
problem and domains are defined in a problem paragraph, JLP classifies treatment
units into domain combinations. All units in a domain combination belong exactly to
the same domains (a unit can belong to any number of domains). A logical vector is
created for each domain combination telling what constraints apply in the domain
combination. When JLP is dealing with a unit, the loops go over the constraints that
apply in that domain combination.

Domain structure for constraints can be taken into account using any linear
programming program by defining coefficients so that they are zero outside the
domain. This would lead to a system where the same non-zero numbers are stored
several times and many zeros are also stored. JLP stores coefficients only once and
does not store extra zeros.

xk
ij

ijxk

 JLP 127

Concluding Remarks: Future Developments

It was a very difficult to decide at what point to stop the development of the JLP
program and make a first version for a general use. There are several possible
extensions, and some of them would be quite easy to implement. It is best that users
decide what extensions are included in future versions of the program. For instance,
following additions might interest some users:

a) Objective function could be nonlinear with respect to the x-variables. This would
quite easy to implement. Other nonlinear properties would require more work.

b) Now all transformation definitions are cleared after transformations are computed
(except dtran which are computed always in place). If definitions could be saved, it
would be possible to have parameters in definitions and change their values with
constant command without needing to retype (or recall from include file)
transformation definitions.

c) It is not currently possible to merge several data sets saved in JLP-format. Is there
need for it?

d) It is not currently possible to edit afterwards problem paragraph or transformation
definitions. This is not a great shortage in modern computer environments where one
can switch to an other editor program and then return to JLP and get edited commands
using include command.

e) JLP algorithm is built so that dimension of the basis (the number of binding
constraints) can change any time. Thus it would be easy to add to JLP the property that
the user could add or remove constraints from the previous problem, and the
optimization would start from the previous solution. Now the algorithm is utilizing the
previous solution only by using the set of the key schedules of the previous solution.
An earlier version of the program included these capabilities, and it was found that in
small problems no significant improvement in speed was obtained. The situation may
be different in large problems.

128 References

References

CRC Standard mathematical tables. 25th Edition. CRC Press, Boca Raton, Florida. 613 p.

Dantzig, G. B. and VanSlyke, R. M. 1967. Generalized upper bounding techniques.
Journal of Computer and System Sciences 1:213-226.

Dykstra, D. P. 1984. Mathematical programming for natural resource management.
McGraw-Hill. New York. 318 p.

Kilkki, P. 1987. Timber management planning. 2nd edition. Silva Carelica 5. 160 p.
University of Joensuu. Faculty of Forestry.

Lappi, J. and Siitonen, M. 1985. A utility model for timber production based on
different interest rates for loans and savings. Silva Fennica 19(3):271-280.

Luenberger D. G. 1973. Introduction to linear and nonlinear programming. Addison-
Wesley, Reading. Mass. 356 p.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. 1986. Numerical
recipes: The art of scientific computing. Cambridge University Press. 818 p.

Siitonen, M. 1983. A long term forestry planning system based on data from the Finnish
national forest inventory. Forest Inventory for improved Management, Proc. of the
IUFRO Subject Group 4.02 Meeting in Finland, September 5-6 1983. Univ. of
Helsinki. Department of Forest Mensuaration and Management. Res. Notes 17: 195-
207.

Steuer, R.E. 1986. Multiple criteria optimization: Theory, computation, and application.
John Wiley. New York. 546 p.

129

List of Commands

Current commands (significant part is underlineed):

 batch buff buflevel cdata cform
 const ctran cvar do dtran
 dupl end enddo feasible help
 helpfile include init keepc keepx
 make mrep outfile outlevel own1
 own2 ownread parin parout path
 pause printlevel problem read recall
 report save sched show solve
 split system time title unsave
 values write xdata xform xtran
 xvar

Note that the modules of the Reference Manual (Part 3) are listed at the beginning of it.

Index

Valid JLP commands are underlined.

PAR error message 102
Basic

explicit basic schedules 110
implicit basic schedules 109
z-variable 20

Basis
reinversion 53
working 109; 111

batch mode 24; 27; 55; 64; 102
Buffer

interface 55
buflevel 55
buff 99
see also Own:interface

text 91
Building JLP 74
C-variables 33; 70; 90

cdata 28; 56
cform 28; 56
ctran 28; 57
cvar 28; 57
keepc 28; 34; 61
"ns" 71
"unit" 71

Command
line 14; 56

comment 14
continuation 14

option 14
syntax 14

constants 28; 32; 39; 57; 70
Constraints

area 11
defining x-variables 10
utility 10; 41

Cost
of decreasing x 50; 51; 127
of increasing x 50; 127
reduced, see: Reduced cost

D-variables 32; 33; 70
"data" 32; 71
dtran 28; 58

Dantzig 107; 109
Data

reading 28
transforming 29
variables 30

Decision variables 11

130 Index

Degeneracy 53
linearly dependent constraints 103
lower bound=minimum 104

Directory 58; 64
do loop 58
Domains 41; 58

computation 129
domain combination 129
domain variables 12
mixing 43

Dual 122; 123
objective function of 125

duplicating schedules 29; 59
Dykstra 8; 11
end 59
end do 59
Entering variable 111
feasible 44; 60

technique for finding 120
Files 60

in the package
jlp.hlp 25; 55
jlp.par 76
readme.jlp 74
source (.src) files 74

output file 26
version 81

Goal programming 18
Headers of subroutines 87
help 25; 60

help file 25
helpfile 25; 60

If ... then structures 38
include 24; 61
INF - in output 51
init 61
Integer approximation 44; 61; 67
JLP format 66
JLP subroutines 82
jmake precompiler 74-87
Key schedule 109
Kilkki 8; 11
Lappi 8; 50
Leaving variable 114
list a file 25; 61
Logical operators 37
Loop

in solving problems 58

in transformations 38; 88
make -compute new variables 29; 62
make JLP, see JMAKE
MELA 15; 62
Model I 11
needs: 83; 84; 87
Objective see: problem
Objective function

of the dual 125
one-x formulation 107; 112
Output 26

file 26
outfile 26; 63
outlevel 26; 63
printlevel 26; 64
see also: Files,Printing,write

Own (user defined)
buffer output 100
commands 63; 101
data input 94
functions in transformations 37; 93
interface 98-101
own1 63
own2 63
ownread 63
report writer

for schedules 97
see also: Report writer

RHS generation 94
subroutines see: Subroutines
terminal input 100
variables managed with JMAKE 83

Paragraph 15
Parameters

of JMAKE 75; 76
of optimization

parin 52; 63
parout 54; 64

path 14; 28; 64
pause 27; 64
Printing

solution 44; 67
rows 44
schedules 45; 67
weights 45

subroutines 92
problem 41

constraints 41

 JLP 131

definition 64
domains 41
objective 42
RHS 42

see also: solve, Own:RHS
Random number 37
read 65
recall 45; 65
Reduced cost

of a schedule 52; 125
of z-variable 51; 113; 125
see also: Shadow price

Rejecting schedules 34; 65
Report writer

mrep 62
repo 66
writing own 96-98

RHS
defining, see: problem
selecting, see: solve, Own:RHS

Rounding errors 103
save 28; 39; 66

format of files 66
unsave 70

sched 45; 67
Shadow price

computation 126
of schedule 52; 125
of unit 51; 124
of utility constraint 47
of x-variable 48; 124

show 44; 67
see also Printing

Siitonen 15; 62
Solution, printing see: Printing
solve 43; 68

find a feasible 44
splitting a unit 29; 68
Steuer 8
Subroutines

for data input 95
for printing 92
for string manipulation 91
for text buffers 91
for timing 82
for transformations 92
for variable lists 89
for variable names 89

headers 87
Swap values of variables 37
system - sending command to 69
System manager 9
Timing 27; 69

comparisons 53
subroutine 82

title 69
Tolerance 53; 104
Transformations 35; 69

arithmetic operations 36
clearing 36
computation scheme 30

when reading 28
ctran - see: C-variables
defining domains - see:Domains
dtran -see: D-variables
logical operations 37
loops 38
subroutines for 92
xtran -see X-variables

Troubleshooting 53; 102
UNIX 81
unsave 70
Utility 11

constraints, see: Constraints
variables 11

values 70
Variables 70

c- see: C-variables
d- see: D-variables
data- see: constants,D-,C-,and X-
decision 11
domain 12
key 108
slack and surplus 113
special 89
variable list 31; 88
w- 11
x- see: x-variables
z- 11

VMS 69; 77; 78; 81
Weight see: Variables:w-
write data to disk 71

see also save
x-variables 11; 34; 70; 90

aggregated 11
keepx 28; 35; 61

132 Index

reject 34
"s" 71
xdata 28; 72
xform 28; 72
xtran 28; 72
xvar 28; 73

	Contents
	Preface
	1. INTRODUCTION
	1.1 General
	1.2 Optimization Problem
	1.3 Purpose of the Report

	2. USER'S GUIDE
	2.1 Overview
	2.2 Command Syntax
	2.3 Examples
	2.4 General Operating Commands
	2.5 Data Management
	2.6 Problem Definition
	2.7 Solution

	3. REFERENCE MANUAL (FILE jlp.hlp)
	4. SETTING UP THE WORKING ENVIRONMENT
	4.1 Building JLP
	4.2 Output Files in non-VMS Environment
	4.3 Sending a Command to the System Level
	4.4 Creating Own Timing Subroutine
	4.5 Management of Programs with JMAKE Precompiler
	4.6 Using JLP Data Structures and Subroutines
	4.7 Creating Own Transformation Subroutines
	4.8 User Designs for RHS Generation
	4.9 User Defined Data Input
	4.10 Writing Own Report Writer
	4.11 Creating Own Interface
	4.12 Adding Own Commands to JLP

	5. ERRORS AND TROUBLESHOOTING
	5.1 Syntax Errors
	5.2 Dimensions of Vectors
	5.3 Problems in the Optimization

	6. LINEAR PROGRAMMING ALGORITHM
	6.1 Problem Formulation
	6.2 Generalized Upper Bound Technique
	6.3 Optimization Algorithm
	6.4 Dual Analysis
	6.5 Domains

	Concluding Remarks: Future Developments
	References
	List of Commands
	Index

	btnPrev:
	btnFind:
	btnSearch:
	btnHome:
	btnNext:

