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Preface 
 
Ten years ago I applied linear programming for optimization problems where the 
MELA simulator generated treatment schedules for a number of treatment units. When 
doing some computing experiments with heuristic methods for solving iteratively 
small problems, I worked out how the computations could be done without heuristics 
so that the basis matrix is small and schedules are checked one after another. I began to 
implement the ideas, but then other problems intervened. In 1989, when Tuula 
Nuutinen needed a linear programming  algorithm in her short term planning system, I 
returned to these ideas and promised to make her a nice little subroutine. It was soon 
found that I had reinvented the well known 'generalized upper bound technique'.  

Initial goals for the software were very modest, but the project got out of the control as 
I followed the possibilities appearing during development process, or tried to meet the 
wishes of Tuula Nuutinen, or of Markku Siitonen who began to use the program in his 
MELA system. The first phase was an optimization subroutine for simple problems 
without interface properties. The second phase was to build an interface including 
transformations and possibilities to state constraints for domains. Third major phase 
was to include capabilities to handle general linear programming problems. 

Installing the software to the GAYA-LP system of Hans Fredrik Hoen helped to make 
the code more portable. 

Tuula Nuutinen and Markku Siitonen read this manuscript, corrected several errors 
and suggested improvements. 

Suonenjoki June 3, 1992 

Juha Lappi 
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1. INTRODUCTION  

1.1 General 

JLP is a linear programming software package designed to solve efficiently (fast and in 
a small computer memory) planning problems of the following type.  The plan is made 
simultaneously for a number of treatment units (e.g. forest stands). A number of 
treatment schedules is derived for each treatment unit. Treatment units can also be 
called calculation units to indicate that they may result from grouping similar 
treatment units together. It is hereafter expressed that  schedules are simulated, but JLP 
does not care how the treatment alternatives are generated. Each schedule is associated 
with a vector of input and output variables over time. For simplicity these variables 
will be called output variables. The decision maker is interested in the aggregated 
output variables, i.e., in the sums of variables over the treatment schedules. Treatment 
schedules can also be aggregated within some domains, i.e., in subsets of calculation 
units.  

It is assumed that the goals of the decision maker can be described as a linear 
programming optimization problem.  For instance, we may want to maximize net 
present value of future incomes, subject to constraints that the income level is 
nondecreasing in each subregion and the total volume after planning period is above a 
minimum level. For the general background for using linear programming in 
management planning see, e.g., Kilkki (1987) and Dykstra (1984). In this report, it is 
assumed that the reader is familiar with the basic properties of linear programming. 

In addition to the aggregated output variables, the problem formulation may contain 
other variables whose values are determined in the optimization process. For instance, 
a goal programming problem (see, e.g., Steuer 1986) includes variables describing how 
much aggregated output variables deviate from target values, and the utility model of 
Lappi and Siitonen (1985) includes variables for consumption, savings and loans.  

JLP is designed to be portable among different computers and planning systems. The 
package is planned to be distributed as FORTRAN 77 source code. It includes a general 
purpose precompiler JMAKE by which the user can easily tailor vectors and working 
areas according to the available memory and size of the problems (the user in charge of 
building an executable version of the program will be hereafter called 'system 
manager'). JMAKE can also be used to add some system dependent features to the 
programs.  The package includes subroutine templates that the system manager can 
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modify for the special input and report generating tasks.  The two main parts of the 
package are the interface part (subroutine jlpin) and the optimization part (subroutine 
jlpopt). To guarantee portability, the interface is built using simple command language 
that is interpreted with standard FORTRAN I/O functions. It is also possible to 
communicate with the interface using simple buffers. Thus a more sophisticated (and 
computer dependent) interface with menus and windows, etc. can be built on the 
provided interface. The system manager can easily access the solution also in binary 
form. 

The program can read data using different formats, and the system manager can 
provide special input subroutines. These input routines can also simulate the schedules 
instead of reading them from files. The program can save the data in fast working files. 
If there is enough memory available, the whole data are stored in the memory. If there 
is not enough memory, a part of the data is stored in a working file. Thus also large 
problems can be solved with small memory. New variables can be created using 
transformations. It is possible that data contain only the physical variables, and, e.g., 
the cost and price variables are created during the optimization. The same 
transformation compiler is used for defining domains where different  constraints 
should be fulfilled. The domains can overlap in any manner (i.e. there can be 
simultaneously domains for North and South, and poor and good sites).  

1.2 Optimization Problem 

Mathematically the optimization problems considered can be described as follows 
(more complete mathematical treatment is in Part 6). Let us first define a linear 
programming problem without assuming domains for constraints. An optimization 
problem can be presented as: 

Max  or Min  (1.1) z0 � a0k xk
k�1

p

� � b0k
k�1

q

� zk

subject to the following constraints: 

��

ct � atk xk
k�1

p

� � btkzk
k�1

q

� � Ct , t �1,�, r  (1.2) 

��

xk � xk
ijwij

j �1

ni

�
i�1

m

� � 0, k �1,�, p  (1.3) 

��

wij
j�1

ni

� � 1, i � 1,�,m  (1.4) 
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wij � 0 for all i and j   (1.5) 

zk � 0 for k � 1,... ,q , (1.6) 

where 

m     = number of treatment units 

ni     = number of management schedules for unit i 

wij   = the weight (proportion) of the treatment unit i managed according to 
management schedule j 

xk
ij     = amount of item k  produced or consumed by unit i if schedule j is  applied 

xk      = obtained amount of output variable k, k=1,...,p 

zk   = an additional decision variable, k=1,...,q 

atk = fixed real constants for t=1,...,r,  k=1,...,p 

btk = fixed real constants for t=1,...,r,  k=1,...,q 

r  = number of utility constraints 

The problem is solved by finding proper values for the unknown variables wij, xk  and 
zk. 

The constraints of form (1.2) are for the aggregated variables and other decision 
variables of which the decision maker is interested. These constraints will be called 
utility constraints. Term 'constraint' without qualifications refers later to the utility 
constraints. Constraints (1.3) define the aggregated output variables xk  as the sums 
over the calculation units. Coefficients  are known constants produced by the 
simulation system. If the simulation system computes  output quantities per area unit, 
then coefficients  are obtained from these relative figures by multiplying with the 
area of the unit. The constraint (1.3) can be equivalently written as: 

xk
ij

ijxk

��

xk � xk
ijwij

j�1

ni

�
i�1

m

� , k � 1,�, p  (1.7) 

The less intuitive form is used in (1.3) in order to follow the linear programming 
convention that the right hand side is always a constant.  Depending on the context, 
term x-variable  refers either to an aggregated xk -variable defined in (1.3) or in (1.7), or 
to constants .  xk

ij
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Constraints (1.4) are so called area constraints saying that proportions of treatment 
schedules in a treatment unit need to sum up to one. A variable wij  is called a w-variable  
or a weight.. A variable zk  is called a z-variable. W-variables and z-variables are decision 
variables  by which we can fix a possible solution. Even if aggregated xk  variables are 
formally unknown variables of the optimization problem, their values can be trivially 
computed from Eq. (1.7) if the values of w-variables are known.  Z-variables and 
(aggregated) x-variables are utility variables that determine how good the solution is. As 
described, e.g., by Kilkki (1987), all variables in a linear programming problem can be 
interpreted as variables in an implicit utility model. It is assumed in the above problem 
formulation that the identity of management units is preserved throughout the 
planning horizon. Thus the planning model can be classified as type Model I in the 
Model I / Model II terminology (see, e.g., Dykstra 1984) 

The problem is a standard linear programming problem (some simple technical tricks 
may be needed depending on what is meant by 'standard'), and thus any linear 
programming software can be used to solve it.  

A domain specific objective function or constraint can be defined in the above 
formulation by defining  to be zero if unit i does not belong to the intended domain. 
The domain specifications are made explicit in the following formulation. Let Dt denote 
a subset of units (i.e. a subset of the set {1,...,m}) that are used on row t. Domains for 
different rows can be equal. Then a linear programming problem with domain 
specifications is: 

xk
ij

Max  or Min   (1.8) z0 � a0k xkD0
k�1

p

� � b0k
k�1

q

� zk ,

 subject to: 

��

ct � atk xk Dt
k�1

p

� � btk zk
k�1

q

� � Ct , t � 1,�,r  (1.9) 

��

xkDt
� xk

ijwij
j�1

ni

�
i�Dt

� � 0 , k �1,�, p, t � 1,.... ,r  (1.10) 

��

wij
j�1

ni

� �1, i �1,�, m     (1.11) 

wij � 0 for all i and j  (1.12) 

zk � 0 for k � 1,... ,q  (1.13) 
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It is thus assumed that aggregated output variables appearing in the same constraint 
are all for the same domain. X-variables from different domains can be included in the 
same constraint using additional z-variables, as will be described later. Z-variables are 
always assumed to be global. Variables xkDt  will be called domain variables if it is 

emphasized that the summation is over a given domain. 

A user of JLP needs only to define objective function (1.1) or (1.8) and the utility 
constraints (1.2) or (1.10), and JLP takes care of the other constraints utilizing the special 
structure of the problem. 

1.3 Purpose of the Report 

The purpose of this report is: 

1) To be user's guide and reference manual for the JLP software when used 'as is'. 

2) To help to install the software into a larger planning system. 

3) To help to understand how linear programming can be used in (forest) 
management planning problems, and how the results can be interpreted. 

4) To give insight to mathematical structure of planning problems considered. 

5) To make a break point in the development process of the software.  

The main chapters of the report are called 'parts' in order to indicate that they can be 
largely read independently of each others. The main parts of the 'Parts' are called 
'Chapters'. Because the report is intended to serve as a manual, a certain amount of 
repetition is intentional. 
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2. USER'S GUIDE 

2.1 Overview 

This part describes  the standard interface of the JLP package. A system manager can 
add extra features  or develop an own interface (see Part 4).  

Some of the basic features of the standard JLP are: 

Commands can be entered from the terminal or read from files using include 
command. A specific section of a file can be included. Included files can be nested. 
Included files can be listed without executing the commands. 

Output can be written to output files. The amount of output can be controlled.  

On-line help is available. The user or system manager can modify the help file. 

With time command the user can measure the time of any section of the session. 

Data can be read in from several files, using different formats or subroutines 
provided by the system manager.  

Data can be stored in a special JLP format.  

Variables are referred with variable names.  New variables can be created with 
transformations. Transformed data can be written on the disk.  

New schedules can be created by duplicating old schedules and modifying 
duplicates with transformations.  

A treatment unit can be split so that different parts inherit different schedules from 
the original unit.  

In addition to the x-variables that describe the simulated alternatives, JLP can utilize 
variables that describe data files (d-variables) and treatment units (c-variables).  These 
variables can be used as parameters in transformations of x-variables, or they can be 
used to define domains for constraints. 

Several RHS's can be defined in the same problem definition, and the alternative 
problems implied can be solved in a loop.   

JLP can solve ordinary linear programming problems (i.e. without simulated data for 
treatment units). 

Values of aggregated x-variables not included in the problem can be computed using 
weights provided by the solution.  
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JLP can compute the shadow prices of treatment units, shadow prices of x-variables, 
reduced costs of the nonbasic z-variables, and reduced costs for forcing a nonoptimal 
schedule into the solution. JLP can compute also the cost of forcing an x-variable to 
get a smaller or greater value than it had in the solution.  

In this chapter only the basic features of different commands are described. For each 
topic, more details are given in the reference manual (Part 3). 

2.2 Command Syntax 

All commands need to be in lower case. A command line can contain spaces and tabs. If 
the last character of a line is  '>', then the logical command line continues to the next 
physical line (record). Commands can be read from terminal (or input stream in batch 
mode) or from files using include command. Command lines starting with '*', '!', or ';' 
are comments, and the rest of line following '!' is also a comment. Continuation 
character '>' is significant also after '!', the next line is regarded as the continuation of 
the comment.  

pIf '>' is the last character of a command line, then the next line is not interpreted as a 
continuation line if '!' is put after the command. This is important to remember when 
using path command in systems where directory can be given as: '<directory>'. For 
instance, the following command works as intended: 

path disk2:<mela.data> ! 

Names of commands are checked as long as the name is uniquely determined (usually 
four characters are significant). The rest of the command name is ignored. In this 
manual, a longer form of a command name may be used when the command is 
introduced. A shorter form is used thereafter. 

Commands can have options starting with '/'. Options are appended to the command 
name without space. In options (e.g. '/all') only the first character is usually 
significant, except in negation options (e.g. '/nocost') three characters are significant. 
If more characters are significant, it is always indicated.  If a command has several 
options, the order of options is free. 

Examples: 

The following input lines are equivalent (in schedules command four characters are 
significant): 
 
schedules/all     20   ! comment 
     sche/a     20  
schepeteus/argum#entr  > 
   20    
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A group of commands belonging together is called a paragraph. Paragraphs end always 
with '/'. For instance the following paragraph defines a linear programming problem: 
 
problem 
x1=0 
x2 max 
/ 

2.3 Examples 

JLP solved the following examples in Macintosh Quadra 700. JLP was compiled with 
Language Systems FORTRAN 3.0 compiler. Data were simulated with MELA system 
(see Siitonen 1983).  MELA specific features are not used in examples. Management 
schedules were simulated for five ten-year periods. Management operations are 
assumed to take place at midpoints of periods. The following variables were taken from 
MELA files  into standard sequential files: 

vol.0,-vol.5            = total volumes, initial and after each period 
npv.0,-npv.5   =  net present values  
cutvol.1,-cutvol.5    =  annual volume harvested in each period  
clearcut.1,-clearcut.5  =   annual clear cut areas  
income.1,-income.5    = annual net incomes 
 
When JLP is started, it prompts 

jlp> 

and waits for commands from terminal (or input stream). The commands for the 
following examples are stored in file ex.in. File ex.in contains a section: 

*ex1  
...commands 
*end ex1 

This section can be submitted using include command. 

2.3.1 A problem with x-variables: nondecreasing incomes 

jlp>incl ex.in/*ex1:* 
> *ex1 
> xdat savo.xdb   ! file containing x-data (simulated schedules) 
> xform b         ! x-variables are in binary file 
> xvar vol.0,-vol.5,npv.0,-npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5,> 
>  income.1,-income.5  !variables in x-data 
> cdat savo.cda   ! text file containing c-data 
> cvar ns      ! c-data must always contain number_of_schedules_variable 'ns' 
> cform *      ! c-data can be read using FORTRAN free format '*' 
> time         ! start timing 
starting timing.. 
> prob 
 . . . . . . . . . . . . . . .needs to read data ... 
reading xdat-file: savo.xdb 
reading cdat-file: savo.cda 
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number of calculation units, schedules: . . . . .     433  12100 
number of variables in xmat-matrix, max of ns  . .     27    181 
memory used by xmat, units written to disk . . . .     37%     0 
x-variables: vol.0,vol.1,vol.2,vol.3,vol.4,vol.5,npv.0,npv.1,npv.2,npv.3, 
npv.4,npv.5,cutvol.1,cutvol.2,cutvol.3,cutvol.4,cutvol.5,clearcut.1, 
clearcut.2,clearcut.3,clearcut.4,clearcut.5,income.1,income.2,income.3, 
income.4,income.5 
number of variables in cmat-matrix: . . . . . . .       1 
memory used by cmat  . . . . . . . . . . . . . . .     44% 
c-variables:ns 
number of rejected schedules:  . . . . . . . . . .      0 
 . . . . . . . . . . . . . . . . . data ready. 
> income.2-income.1>0 
> income.3-income.2>0 
> income.4-income.3>0 
> income.5-income.4>0 
> npv.0 max 
> / 
number of domains, domain combinations: . . . . .       1      1 
number of z-variables, temporary x-variables . . .      0      4 
______________________________________________________________________________ 
domain:                                         # of units 
row    tolerance       min             max 
______________________________________________________________________________ 
all:                                                  433 
   1  0.4911442E-01  -1018118.       2126654. 
   2  0.7530341E-01  -1961494.       3260638. 
   3  0.1083217      -3036788.       4690328. 
   4  0.1455694      -4459802.       6303157. 
   5  0.7732226      0.2381406E+08  0.3348054E+08 
> time    ! print time since last time command 
elapsed: 32.71655 total: 32.71655 
> solve   ! solve the problem defined in problem paragraph 
starting optimization... 
ok(0)  constr.   2:  80632.089    w+z basics:   0   0 
ok(0)  constr.   3:  98079.493    w+z basics:   0   0 
ok(0)  constr.   4:  684918.26    w+z basics:   0   0 
ok(2)  constr.   1:  664.13396    w+z basics:   0   0 
**FEASIBLE 
**OBJECT VARIABLE:   30759195.    w+z basics:   0   0 
unit=    1, OBJ VAR= 32697588.    w+z basics:   1   0 
unit=    1, OBJ VAR= 33225259.    w+z basics:   3   0 
... 
unit=    1, OBJ VAR= 33455594.    w+z basics:   4   0 
unit=    1, OBJ VAR= 33458323.    w+z basics:   4   0 
unit=    1, OBJ VAR= 33458704.    w+z basics:   4   0 
unit=    1, OBJ VAR= 33459040.    w+z basics:   4   0 
unit=    1, OBJ VAR= 33459073.    w+z basics:   4   0 
**SOLUTION, OBJ VAR= 33459073.    w+z basics:   4   0 unit=  332 
*s* solution,      optimization time ...11.14990 
time for computing x-variables:   20.35009 
______________________________________________________________________________ 
DOMAIN all:                                                          433 units 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  1) income.2-income.1  . . . . .  0.00000000 -0.2052712   0.000000          L 
  2) income.3-income.2  . . . . .  0.00000000 -0.2147269   0.000000          L 
  3) income.4-income.3  . . . . .  0.00000000 -0.0895401   0.000000          L 
  4) income.5-income.4  . . . . .  0.00000000 -0.0410396   0.000000          L 
  5) npv.0 . . . . . . . . . . . . 33459072.9 1.00000000           max 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     vol.0  . . . . . . . . . . .  146895.466               INF        INF 
     vol.1  . . . . . . . . . . .  160940.368            0.00575244 0.09252250 
     vol.2  . . . . . . . . . . .  168948.219            0.00345704 0.00000000 
     vol.3  . . . . . . . . . . .  176632.726            0.00433317 0.00000000 
     vol.4  . . . . . . . . . . .  201095.434            0.00000000 0.02377209 
     vol.5  . . . . . . . . . . .  247916.318            0.00391562 0.00000000 
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     npv.0  . . . . . . . . . . .  33459072.9 1.00000000 1.00000000    INF 
     npv.1  . . . . . . . . . . .  35829849.0            0.00017427 0.00000000 
     npv.2  . . . . . . . . . . .  39015973.1            0.00007436 0.00000000 
     npv.3  . . . . . . . . . . .  43297856.3            0.00004199 0.00000000 
     npv.4  . . . . . . . . . . .  49052348.2            0.00002650 0.00000000 
     npv.5  . . . . . . . . . . .  56785902.2            0.00001771 0.00000000 
     cutvol.1  . . . . . . . . . . 5514.61876            1.45063281 0.09019085 
     cutvol.2  . . . . . . . . . . 5894.09835            0.80362908 0.31202058 
     cutvol.3  . . . . . . . . . . 6087.74131            0.08545117 0.61943881 
     cutvol.4  . . . . . . . . . . 5926.31498            0.41053064 0.02250821 
     cutvol.5  . . . . . . . . . . 5340.53036            0.00000000 1.26948442 
     clearcut.1  . . . . . . . . . 18.3550669            1131.97075 191.506863 
     clearcut.2  . . . . . . . . . 8.74457034               INF     10068.0952 
     clearcut.3  . . . . . . . . . 3.80288005            228.412333 1507.36195 
     clearcut.4  . . . . . . . . . 7.36293925            88.5195472 10242.1571 
     clearcut.5  . . . . . . . . . 7.71705472            212.978217 1084.61137 
     income.1  . . . . . . . . . . 788108.446 -0.2052712 0.00000000 0.00202079 
     income.2  . . . . . . . . . . 788108.443 -0.0094556 0.00000000 0.00202079 
     income.3  . . . . . . . . . . 788108.441 0.12518680 0.00000000 0.00202079 
     income.4  . . . . . . . . . . 788108.439 0.04850047 0.00000000 0.00202079 
     income.5  . . . . . . . . . . 788108.439 0.04103964 0.00000000 0.00202079 
______________________________________________________________________________ 
> *end ex1 
jlp> 

A '>' character at the beginning of a line indicates that the line is read from the included 
file. Commands xdata, xform and xvar define the treatment schedule information for 
JLP. Commands cdata, cform and cvar define information about the calculation 
units. JLP needs to know at least how many schedules there are in each treatment unit 
(variable ns). When the problem paragraph starts, JLP reads data into the memory. 
Thus the data definitions need to be before problem command but the order of 
definitions does not matter. After reading the problem definition, JLP computes the 
smallest and largest possible values of the aggregated output variables (x-variables). 
These bounds will rule out some problems as infeasible immediately. These bounds are 
also used for determining tolerance values of round-off errors. 

In the example, all calculation units belonged to the same domain (all:). Command 
solve asks JLP to solve the problem. The x-variable section of the output is computed 
after the solution is obtained. These computations took more time than the 
optimization as such (times are in seconds). A part or all of these after-solution 
computations can be avoided. The shadow prices of x-variables income.1,-income.5 are 
the shadow prices of constraints (1.3) defining the x-variables. They tell how the 
objective function would change if the problem remains the same and we get an extra 
unit of the x-variable from another source. The cost of decrease and cost of increase are the 
marginal changes in the objective function if we would add a new constraint that 
would require the corresponding x-variable to decrease or increase by one unit from the 
value implied by the solution. The output and interpretation of shadow prices are later 
described in detail.  
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2.3.2 A problem with x- and z-variables: goal programming 

The next example includes also z-variables, i.e., technical variables needed in some 
linear programming problems. Suppose that we would like to have such a management 
plan that variables income.1,-income.5 would have values 800, 850, 900, 1000 and 1100 
thousands, and variable npv.5 would have value 50 mill. However, a problem with 
these constraints is infeasible. We might then search for a plan that minimizes the sum 
of differences between income variables and the target values. As all z-variables are 
nonnegative, we need to define deviations from target values using slack and surplus 
variables. Such a goal programming problem definition is stored in file ex.in  starting 
with an label '*ex2'. Thus our session might continue as follows (part of the output is 
deleted). 
jlp>incl ex.in/*ex2:* 
> *ex2 
> prob 
> income.1 -sp.1 + sl.1  =  800000 / = 850000 ! The values after '/' define 
> ;                                             alternative RHS's 
> income.2 -sp.2 + sl.2  =  850000 / = 900000 
> income.3 -sp.3 + sl.3  =  900000 / = 1000000 
> income.4 -sp.4 + sl.4  = 1000000 / = 1000000 
> income.5 -sp.5 + sl.5  = 1100000 / = 1100000 
> npv.5 > 50000000 
> sp.1 + sl.1 + sp.2 + sl.2 + sp.3 + sl.3 + sp.4 + sl.4 + sp.5 + sl.5  min 
> / 
number of domains, domain combinations: . . . . .       1      1 
number of z-variables, temporary x-variables . . .     10      0 
______________________________________________________________________________ 
domain:                                         # of units 
row    tolerance       min             max 
______________________________________________________________________________ 
all:                                                  433 
   1  0.2798653E-01  -2704.495       1211817. 
   2  0.4927205E-01   4919.161       2133480. 
   3  0.7595614E-01  -26151.70       3288901. 
   4  0.1088024      -35820.53       4711143. 
   5  0.1466871      -42605.84       6351553. 
   6   2.487337      0.2907604E+08  0.1077017E+09 
   7  0.2798653E-01 
> *end ex2 
jlp>solve 
starting optimization... 
ok(0)  constr.   6:  57299366.    w+z basics:   0   0 
ok(3)  constr.   1:  800000.00    w+z basics:   0   1 
ok(3)  constr.   2:  850000.00    w+z basics:   0   2 
ok(3)  constr.   3:  900000.00    w+z basics:   0   3 
ok(3)  constr.   4: 1000000.00    w+z basics:   0   4 
ok(3)  constr.   5:  1100000.0    w+z basics:   0   5 
**FEASIBLE 
**OBJECT VARIABLE:   744657.25    w+z basics:   0   5 
unit=    1, OBJ VAR= 741184.00    w+z basics:   0   5 
unit=    1, OBJ VAR= 213000.08    w+z basics:   4   2 
... 
unit=    1, OBJ VAR= 137757.85    w+z basics:   5   1 
unit=    1, OBJ VAR= 137750.84    w+z basics:   5   1 
unit=    1, OBJ VAR= 137750.25    w+z basics:   5   1 
**SOLUTION, OBJ VAR= 137750.25    w+z basics:   5   1 unit=  146 
*s* solution,      optimization time ...24.41650 
time for computing x-variables:   27.23339 
______________________________________________________________________________ 
DOMAIN all:                                                          433 units 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
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                                                 price      bound    bound 
______________________________________________________________________________ 
  1) income.1-sp.1+sl.1  . . . . . 800000.000 -1.0000000        800000.0     U 
  2) income.2-sp.2+sl.2  . . . . . 850000.000 -0.7715559        850000.0     U 
  3) income.3-sp.3+sl.3  . . . . . 900000.000 -0.5931115        900000.0     U 
  4) income.4-sp.4+sl.4  . . . . . 1000000.00 -0.4444153        1000000.     U 
  5) income.5-sp.5+sl.5  . . . . . 1100000.00 -0.3276779        1100000.     U 
  6) npv.5 . . . . . . . . . . . . 50000000.0 -0.0260183   50000000          U 
  7) sp.1+sl.1+sp.2+sl.2+ 
     sp.3+sl.3+sp.4+sl.4+sp.5+sl.5 137750.254 1.00000000           min 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     vol.0  . . . . . . . . . . .  146895.466               INF        INF 
     vol.1  . . . . . . . . . . .  172770.584            0.00000000 0.00000000 
     vol.2  . . . . . . . . . . .  181429.917            0.00000000 0.00000000 
     vol.3  . . . . . . . . . . .  182321.570            0.00000000 0.00000000 
     vol.4  . . . . . . . . . . .  186760.039            0.00000000 0.00000000 
     vol.5  . . . . . . . . . . .  196640.038            0.00000000 0.00000000 
     npv.0  . . . . . . . . . . .  33334940.3            0.00000000 0.96435642 
     npv.1  . . . . . . . . . . .  37122072.3            0.00000000 0.00000000 
     npv.2  . . . . . . . . . . .  40035120.1            0.00000000 0.00000000 
     npv.3  . . . . . . . . . . .  43370374.6            0.00000000 0.00000000 
     npv.4  . . . . . . . . . . .  46693402.9            0.00000000 0.00000000 
     npv.5  . . . . . . . . . . .  50000000.0 0.02601837    INF        INF 
     cutvol.1  . . . . . . . . . . 4547.23514            0.00000000 0.00000000 
     cutvol.2  . . . . . . . . . . 6167.46797            0.00000000 0.00000000 
     cutvol.3  . . . . . . . . . . 6858.98612            0.00000000 0.00000000 
     cutvol.4  . . . . . . . . . . 7328.18340            0.00000000 0.00000000 
     cutvol.5  . . . . . . . . . . 7693.73133            0.00000000 0.00000000 
     clearcut.1  . . . . . . . . . 13.8998666            0.00000000 0.00000000 
     clearcut.2  . . . . . . . . . 10.0533873            0.00000000 0.00000000 
     clearcut.3  . . . . . . . . . 6.55008829            0.00000000 0.00000000 
     clearcut.4  . . . . . . . . . 8.95997921            0.00000000 0.00000000 
     clearcut.5  . . . . . . . . . 14.4669117            0.00000000 0.00000000 
     income.1  . . . . . . . . . . 662249.745 1.00000000 0.00000000 0.29608234 
     income.2  . . . . . . . . . . 849999.999 0.77155591 0.22844408 1.77155588 
     income.3  . . . . . . . . . . 900000.000 0.59311153 0.40688847 1.59311154 
     income.4  . . . . . . . . . . 1000000.00 0.44441532 0.55558468 1.44441535 
     income.5  . . . . . . . . . . 1099999.99 0.32767794 0.67232208 1.32767801 
______________________________________________________________________________ 
z-variable              value      reduced cost 
______________________________________________________________________________ 
sp.1  . . . . . . . . 0.00000000   0.00000000 
sl.1  . . . . . . . . 137750.254   0.00000000 
sp.2  . . . . . . . . 0.00000000   0.22844408 
sl.2  . . . . . . . . 0.00000000   1.77155591 
sp.3  . . . . . . . . 0.00000000   0.40688846 
sl.3  . . . . . . . . 0.00000000   1.59311153 
sp.4  . . . . . . . . 0.00000000   0.55558467 
sl.4  . . . . . . . . 0.00000000   1.44441532 
sp.5  . . . . . . . . 0.00000000   0.67232205 
sl.5  . . . . . . . . 0.00000000   1.32767794 
jlp> 

We see that when deviations have the same weight for each period, only income during 
the first period deviates from the target. Output 'w+z basics:   5   1' tells that there 
are 5 basic weight variables and one basic z-variable in the solution. JLP computes for 
each z-variable the reduced cost that tells the marginal price of forcing the variable to 
the solution. For a basic (nonzero) z-variable, the reduced cost is zero. 

The problem with the second set of RHS's defined in the problem paragraph could be 
then solved with: 
jlp>solve 2 
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Both x- and z-variables are also needed to solve, e.g., the utility model of Lappi and 
Siitonen (1985) which provides an alternative linear programming problem formulation 
for studying smooth income patterns.  

2.3.3 A problem with z-variables: an ordinary LP problem 

The third example shows that JLP can solve also ordinary linear programming 
problems (i.e. without simulated treatment schedules): 

jlp>incl ex.in/*lu52:* 
> *lu52 This example is from Luenberger (1973) p. 52 
> prob 
> 2*x1 +x2 +3*x3-2*x4+10*x5 min ! x1, -x5 are here z-variables, because they 
;                                 were not defined in xvar or xtran 
> x1+x3-x4+2*x5=5 
> x2+2*x3+2*x4+x5=9 
> x1<7 
> x2<10 
> x3<1 
> x4<5 
> x5<3 
> / 
no x-variables, number of z-variables  . . . . . .      5 
tolerance for all rows: 0.00010000 
> *end lu52 
jlp>solve 
starting optimization... 
ok(0)  constr.   4: 0.00000000    w+z basics:   0   0 
ok(0)  constr.   5: 0.00000000    w+z basics:   0   0 
ok(0)  constr.   6: 0.00000000    w+z basics:   0   0 
ok(0)  constr.   7: 0.00000000    w+z basics:   0   0 
ok(0)  constr.   8: 0.00000000    w+z basics:   0   0 
ok(3)  constr.   2:  5.0000000    w+z basics:   0   1 
ok(3)  constr.   3:  9.0000000    w+z basics:   0   3 
**FEASIBLE 
**OBJECT VARIABLE:   29.000000    w+z basics:   0   3 
unit=    1, OBJ VAR= 12.000000    w+z basics:   0   4 
unit=    1, OBJ VAR= 12.000000    w+z basics:   0   4 
**SOLUTION, OBJ VAR= 12.000000    w+z basics:   0   4 unit=    1 
*s* solution,      optimization time ...0.250000 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  1) 2*x1+x2+3*x3-2*x4+10*x5  . .  12.0000000 1.00000000           min 
  2) x1+x3-x4+2*x5  . . . . . . .  5.00000000 4.00000000        5.000000     L 
  3) x2+2*x3+2*x4+x5  . . . . . .  9.00000000 1.00000000        9.000000     L 
  4) x1  . . . . . . . . . . . . . 7.00000000 -2.0000000            7.000000 U 
  5) x2  . . . . . . . . . . . . . 1.00000000 0.00000000            10.00000 
  6) x3  . . . . . . . . . . . . . 1.00000000 -3.0000000            1.000000 U 
  7) x4  . . . . . . . . . . . . . 3.00000000 0.00000000            5.000000 
  8) x5  . . . . . . . . . . . . . 0.00000000 0.00000000            3.000000 
______________________________________________________________________________ 
z-variable              value      reduced cost 
______________________________________________________________________________ 
x1  . . . . . . . . . 7.00000000   0.00000000 
x2  . . . . . . . . . 1.00000000   0.00000000 
x3  . . . . . . . . . 1.00000000   0.00000000 
x4  . . . . . . . . . 3.00000000   0.00000000 
x5  . . . . . . . . . 0.00000000   1.00000000 
jlp> 

Note that the term unit appearing in the printing of the optimization algorithm does 
not mean anything. JLP interprets the variables x1,–x5 as z-variables because they 
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were not defined in a previous xvar command or in xtran transformations 
(transformations creating new x-variables). JLP is not efficient in solving ordinary linear  
programming problems, but in small problems that may be of less interest. 

2.3.4 A problem with several data files and domains 

The following problem uses following properties of JLP: data can be read from several 
files, there can be transformations of variables, symbolic names for constants can be 
defined, constraints can be defined for different domains (subsets of units), results can 
be printed for additional printing domains  (most part of printing is deleted): 
jlp>incl ex.in/*exd:* 
> *exd   ! example including domains 
> xdat savo.xdb,vaasa.xdb  ! two data sets 
> xform b 
> xvar vol.0,-vol.5,npv.0,-npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5,> 
>  income.1,-income.5       
> cdat savo.cda,vaasa.cda   !  c-data 
> cvar ns          
> cform *       
> ctran ! data do not contain c-variables, let us make an artificial 'owner' 
> owner=unit-2*int(unit/2) ! owner = 0,1 
> / 
> const private,public=1,0 ! make symbolic names for owner groups 
> prob 
 . . . . . . . . . . . . . . .needs to read data ... 
reading xdat-file: savo.xdb 
reading cdat-file: savo.cda 
number of calculation units, schedules: . . . . .     433  12100 
reading xdat-file: vaasa.xdb 
reading cdat-file: vaasa.cda 
number of calculation units, schedules: . . . . .     406  12872 
total number of calculation units, schedules: . .     839  24972 
number of variables in xmat-matrix, max of ns  . .     27    200 
memory used by xmat, units written to disk . . . .     75%     0 
x-variables: vol.0,vol.1,vol.2,vol.3,vol.4,vol.5,npv.0,npv.1,npv.2,npv.3, 
npv.4,npv.5,cutvol.1,cutvol.2,cutvol.3,cutvol.4,cutvol.5,clearcut.1, 
clearcut.2,clearcut.3,clearcut.4,clearcut.5,income.1,income.2,income.3, 
income.4,income.5 
number of variables in cmat-matrix: . . . . . . .       2 
memory used by cmat  . . . . . . . . . . . . . . .     84% 
c-variables:ns,owner 
number of rejected schedules:  . . . . . . . . . .      0 
 . . . . . . . . . . . . . . . . . data ready. 
> data=savo.and.owner=private: data=vaasa.and.owner=private: owner=public: 
> income.2-income.1>0 
> income.3-income.2>0 
> income.4-income.3>0 
> income.5-income.4>0 
> all: 
> npv.0 max 
> / 
number of domains, domain combinations: . . . . .       4      3 
number of z-variables, temporary x-variables . . .      0      4 
______________________________________________________________________________ 
domain:                                         # of units 
row    tolerance       min             max 
______________________________________________________________________________ 
data=savo.and.owner=private:                          217 
   1  0.4705846E-01  -525772.3       1021169. 
... 
data=vaasa.and.owner=private:                         203 
   5  0.1653200E-01  -173746.1       335599.5 
... 
owner=public:                                         419 
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   9  0.3611564E-01  -723164.0       1513245. 
... 
all:                                                  839 
  13  0.5274830      0.3129301E+08  0.4425582E+08 
> ! print results for some x-variables only (default is all variables) 
> ! variables npv.1,-npv.4 are not printed 
> ! we may get results for domains not used in problem 
> show/domain  vol.0,-vol.5,npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5 
> data=savo: 
> data=vaasa: 
> / 
> solve   ! solve the problem defined in problem paragraph 
starting optimization... 
ok(0)  constr.   2:  46468.188    w+z basics:   0   0 
... 
ok(2)  constr.   5:  2228.2402    w+z basics:   1   0 
**FEASIBLE 
**OBJECT VARIABLE:   40315249.    w+z basics:   1   0 
unit=    1, OBJ VAR= 41193914.    w+z basics:   4   0 
... 
unit=    1, OBJ VAR= 44209549.    w+z basics:  12   0 
**SOLUTION, OBJ VAR= 44209549.    w+z basics:  12   0 unit=   69 
*s* solution,      optimization time ...30.09960 
time for computing x-variables:   195.7001 
______________________________________________________________________________ 
DOMAIN data=savo.and.owner=private:                                  217 units 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  1) income.2-income.1  . . . . .  0.00000000 -0.1056677   0.000000          L 
  2) income.3-income.2  . . . . .  0.00000000 -0.1513036   0.000000          L 
  3) income.4-income.3  . . . . .  0.00000000 -0.0753490   0.000000          L 
  4) income.5-income.4  . . . . .  0.00000000 -0.0418552   0.000000          L 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     npv.0  . . . . . . . . . . .  16503894.6            1.00000000    INF 
     vol.0  . . . . . . . . . . .  72450.4998               INF        INF 
... 
______________________________________________________________________________ 
DOMAIN data=vaasa.and.owner=private:                                 203 units 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  5) income.2-income.1  . . . . .  0.00000000 -0.3187801   0.000000          L 
  6) income.3-income.2  . . . . .  0.00000000 -0.3297849   0.000000          L 
  7) income.4-income.3  . . . . .  0.00000000 -0.1762447   0.000000          L 
  8) income.5-income.4  . . . . .  0.00000000 -0.0971891   0.000000          L 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     npv.0  . . . . . . . . . . .  5152362.07            1.00000000    INF 
... 
______________________________________________________________________________ 
DOMAIN owner=public:                                                 419 units 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  9) income.2-income.1  . . . . .  0.00000000 -0.2996129   0.000000          L 
 10) income.3-income.2  . . . . .  0.00000000 -0.2838323   0.000000          L 
 11) income.4-income.3  . . . . .  0.00000000 -0.1511955   0.000000          L 
 12) income.5-income.4  . . . . .  0.00000000 -0.0655068   0.000000          L 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     npv.0  . . . . . . . . . . .  22553292.3            1.00000000    INF 
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... 
______________________________________________________________________________ 
DOMAIN all:                                                          839 units 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
 13) npv.0 . . . . . . . . . . . . 44209549.0 1.00000000           max 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     npv.0  . . . . . . . . . . .  44209549.0 1.00000000 0.00000000 0.00750263 
... 
______________________________________________________________________________ 
show/domain data=savo:                                               433 units 
______________________________________________________________________________ 
     x-variable                      value       shadow    cost of   cost of 
                                                 price     decrease  increase 
______________________________________________________________________________ 
     npv.0  . . . 
... 
______________________________________________________________________________ 
show/domain data=vaasa:                                              406 units 
______________________________________________________________________________ 
     npv.0  . . . 
... 

For each domain, JLP prints first the problem rows, and thereafter the x-variables 
implied by the options of the show command. For domains given only with 
'show/dom', there are no problem rows to be printed.  

2.4 General Operating Commands 

In this section the following general operating commands are described: 

batch       – JLP is running in batch mode 
include  – include commands from a file 
list      – list a section of a file  
help      – get on-line help 
outfile   – write output into a file 
outlevel – define the amount of the output 
printlevel   – define the amount of the terminal output 
time – timing 
pause - halt execution 

2.4.1 Batch mode 

The default is that the program is running in interactive mode. If the program is 
running in batch mode, then the first command should be batch. In batch mode, the 
program stops (or control returns to the main program provided by the system 
manager) if an error occurs while in interactive mode only error messages are printed, 



24  Part  2 User's Guide 

open include files are closed and the control is given to the terminal input. In batch 
mode, the program does not print the prompts (e.g. 'jlp>') when reading from the input 
stream. 

2.4.2 Include 

Commands can be read in from files using include command. For instance: 
 
incl data.def 

Part of the file can be read in giving initial and final address: 
 
incl ex.in/*ex2:* 

In this case the program reads the file until it reaches a line starting with '*ex2' (initial 
spaces are ignored). Input from file stops as a line starting with '*' is met. Both the first 
and last line can be ordinary commands that are executed. It may be a good practice to 
use comment lines (starting with '*','!' or ';') as addresses in the files.  If the final 
address is not given, then the rest of file is included: 
 
incl ex.in/*ex2: 

If the command is: 
 
incl ex.in/const 

then only one line is read in.  The default is that included files can be nested up to 6 
levels.  

2.4.3 List 

A file or a part of it can be printed using list command. The syntax of list is as of 
include command, the difference is that all lines read are interpreted as comments. 
This command may be useful if you want to check what a file or a part of it contains 
before executing it using include command. The headers of all subroutines in file 
jlpsub.src  are printed for Part 4 using: 
 
list/all jlpsub.src/*=:** 

Option '/all' means that all segments between lines starting with '*=' and '**' are 
printed. This option is available also for include. 

2.4.4 Help 

On-line help is based on the list command and on a help file that the user or system 
manager can edit. Command help alone is translated internally as: 
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list/all jlp.hlp/*. This prints all header lines in file jlp.hlp  starting with '*'. The 
contents of a cell of the help file starting e.g. with '*list' can be seen using command 
 
help list 

You can also change the help file: 
 
helpfile own.hlp 

Thereafter the help information  is read from file own.hlp. Each cell in the help file ends 
at a line starting with ';'. The current help file  jlp.hlp is printed in Part 3. 

2.4.5 Output  

The user can control both the amount and channels of output (terminal and/or file 
and/or an internal buffer). Output to the different channels is controlled 
independently, so that the user can direct output to any combination of the output 
channels (e.g. so that output goes to all three channels, or nowhere). Output to the 
internal buffer and the access to the solution vectors are described in Part 4.  

Output file (outfile) 

Printed output can be written at any time to a file (in Macintosh with LS-FORTRAN this 
is seldom useful as all output goes to a window that can be edited, printed and saved 
after the session). An output file is opened as: 
 
outfile out.txt 

The output file can be changed by giving a new outfile command. If no file name is 
given, then the old output file is just closed. Writing to the output file does not affect 
the terminal output, which is controlled independently. See Chapter 4.2 for how new 
files are opened in a non-VMS environment. 

Level of output (printlevel, outlevel)The amount of output to the default 
output unit (the screen in interactive mode) is controlled using printlevel command.  
Command  
 
printlevel 0 
 

prevents all printing.  Using 'printlevel 1' only the solutions of the linear  
programming  problems are printed (in addition to the commands read from include 
files).  Printlevels 2 and 3 give information about the structure of the data and the about 
the progress of the optimization algorithm. Higher printlevels than 3 should be used 
only in trouble-shooting. 
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The amount of output to the output file is controlled using outlevel command. It 
works exactly as the printlevel command. Note that one can use different 
printlevel and outlevel in different parts of the job. Selected solutions of the 
linear  programming  problems can be printed to the output file as follows: 
 
outfile sol.out  
outlevel 0        ! 'outfile' sets automatically the outlevel to 1 
problem 
... ! 
solve 

...  the solution shows that the problem needs to be modified 
 
solve +1  ! solve with next RHS or define and solve a new problem  

...solution is OK 
 
outlevel 1 ! start printing to the file 
recall     ! the last solution can be reprinted with recall 
schedules  ! basic schedules can be printed with this command 
outlevel 0 ! start searching new interesting solutions  

2.4.6 Time 

If the system manger has provided a subroutine for measuring time, then the elapsed 
time between two points in the flow of program can be measured with command time. 
The total time from the first time command is also printed. If the system manager has 
supplied a subroutine for measuring CPU time, it is also printed. Time used to solve a 
problem is automatically printed. 

2.4.7 Pause 

If the commands are read from an include file, JLP may print results too fast. With 
pause command the execution of the program halts if the program is not running in 
batch mode. Typing <return>, the program continues. The system manager may 
provide a subroutine with better scrolling properties for the terminal output (see 
Chapter 4.11). 

2.5 Data Management  

JLP can solve linear programming problems including x-variables defined as (see 
Eqs.1.3, 1.7 and 1.10): 
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The simulation system generates coefficients  for different treatment units i 
schedules j and variables k. Generally the number of coefficients  can be very large. 
Thus the main effort in the data access is to handle efficiently these coefficients (x-
variables).  

xk
ij

xk
ij

ij

JLP can solve problems with different constraints for different domains, i.e., groups of 
treatment units. Thus JLP needs also the capabilities for handling variables that 
describe treatment units. These variables are called c-variables. A common description 
(identification) to all units read from the same xdat file can be given with d-variables. 
The user can also define symbolic names for numeric constants. Constants,  d- and c-
variables can be used as parameters of transformations or for defining domains. This 
chapter describes briefly how JLP manages constants, d-variables, c-variables and x-
variables (i.e. coefficients ). These variables are called data variable  (other variables 
getting values in the optimization process, e.g., z- and w-variables are linear 
programming variables). 

xk

2.5.1 Summary of data manipulation 

Initilization commands  

(necessary commands are in bold) 
 
path directory of the data 
dtran transformations made when data files change 
xdat the names of x- files 
xvar the names of x-variables in the xdat files 
xform format for reading xdat files  
xtran transformations of x-variables, 'then reject' transformation  
 interpreted as 'then reject = -1' 
keepx the x-variables stored, default:  xvar- variables and 
 output variables of xtran transformations 
cdat the names of c- files, necessary unless 'xform m' is in effect 
cvar the names of c-variables in the c- files, must include ns 
ctran transformations of c-variables 
keepc the c-variables stored, default:   cvar- variables and 
 output variables of ctran transformations 
cform format for reading cdat files, default: same as xform 
save the data are saved in JLP format on disk 
const constants used in transformations  
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JLP reads the data using following  logic: 

Reading data 
 

 If keepx command was not given put all xvar variables into keepx list. 

 If keepc command was not given put all cvar variables into keepc list. 

 do ifi=1, (number of xdat files) 

  Open ifith cdat file. 

  Open ifith xdat file. 

  V(ivdata) = ifi    ! ivdata is the number of variable 'data' 

  Make dtran transformations. 

  iunit=0 

  do until end-of-file in cdat file 

   iunit=iunit+1 

   Read cvar variables of the unit iunit from the cdat file. 

   V(ivunit)= iunit 

   Make ctran transformations. 

   Store keepc variables in cmat matrix. 

   If there is not enough space in xmat matrix, write first 

   units in xmat in the save or scratch file.  

   do is = 1, V(ivns)! V(ivns) = number of schedules 

    Read xvar variables from the xdat file. 

    V(ivs)=is   ! ivs is # of the variable 's' 

    V(ivrej)=0  ! ivrej is # of the variable 'reject' 

    Make xtran transformations. 

    Store keepx variables in xmat matrix. 

   end of loop over schedules 

  end of loop over units 

 end of loop over files 

 If save command was given, save data in JLP format.  

When the data need to be modified later, then basically the same loops are executed but 
instead of reading data from cdat and xdat files, data are obtained from cmat- and 
xmat- matrices (and possibly from a working file, if data are too large for xmat).  

Modification commands 
 
dtran transformations made when data files change 
xtran transformations of x-variables 
ctran transformations of c-variables 
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const constants used in transformations 
dupl transformations defining how to duplicate schedules 
split what variables are split if splitting of units is indicated in xtran 
transformations 
save/later the data are saved in JLP format after modifications 
 

If xtran, ctran, or dupl transformations are given, then JLP executes the following  
modification loops when make or problem command is met: 

Transforming data 
 

 do ifi=1, (number of xdat files) 

  V(ivdata) = ifi    ! ivdata is the number of variable 'data' 

  Make dtran transformations. 

  do iunit=1, (number of units in the xdat file) 

   Get old keepc variables of unit from cmat matrix into V-vector 

   V(ivunit)= iunit ! variable 'unit' is the within file unit # 

   Make ctran transformations. 

   Store old keepc variables and new output variables in cmat               

   If unit is stored in working file, read one record (which  

     contains one or more units) into xmat matrix 

   Make space for new x-variables 

   do is = 1, (number of schedules) 

    Get keepx variables from the xmat matrix. 

    V(ivs)=is   ! ivs is # of the variable 's' 

    V(ivdupl)=0 ! ivdupl is # of variable 'duplicate' 

    If 'reject' was not in keepxl then V(ivrej)=0 

    Make dupl transformations 

    ndupl=V(ivdupl) ! get number of duplicates 

    do i=0, ndupl 

     V(ivdupl)=i 

      Make xtran transformations. 

     Store keepx variables 

     If V(ivsplit)>0 store nesessary information 
     !  ivsplit is # of variable 'split' 

    end of loop over duplicates 

   end of loop over schedules 

   If unit was split, sort schedules 

   If schedules were duplicated, update number of schedules 
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  end of loop over units 

 end of loop over files 
 If any unit was split, generate new units by duplicating rows of cmat and 
  by updating unit related lists 

 If save/later command was given, save data in JLP format.  

2.5.2 Data variables 

This section describes handling of data variables, i.e., constants,  d-, c-, and x-variables. 
Constants, d-variables and c-variables can be used to define domains for constraints. 
Constants and d-variables can be used as parameters in ctran-, and xtran 
transformations, and c-variables can be used as parameters in xtran transformations.  

All data variables are referred using symbolic names. All variable names are stored in 
the same vector. When JLP reads and transforms data, all current values of different 
variable levels are put to the same vector. This makes it possible that transformations of 
a given level of variables can use variables at the higher levels. 

Variable names must start with a letter A-Z or a-z (not with 'ÄÅÖäöå') and cannot 
contain characters !"=*,/:-%. Variable names are case sensitive. For instance, name 
'a#$.1' is a valid variable  name. The system manager can decide the maximum length 
of variable names (see Chapter 4.1, 32 characters is the default).  

Variables are referred using variable lists. Variable lists are formed by separating 
variable names with commas. A variable list with consecutive variable names can be 
formed, e.g., as follows: 
 
xvar income.1,-income.3,volume != income.1,income.2,income.3,volume 
const a,-d=2*1,2,3             ! a,b,c,d =1,1,2,3 

Note that ',–' construction is interpreted using variable names and not the order of 
variables (compare to transformation loops described in section 2.5.3). For instance, if 
xvar command is: 

   xvar income.1,volume.1,income.2 

then row 

   income.1,-income.2 

in a problem paragraph is equivalent to: 

   income.1,income.2 

The following variables are automatically created: 

data     = the number of data file to be read in (d-variable) 
unit   = the number of calculation unit (c-variable) 
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s        = the number of the treatment schedule (x-variable) 

Variables duplicate, split, and reject have also predefined meanings, as will 
be explained later in this chapter and in the variables section of the reference manual.  

Constants 

Constants are created and given values using constant command, or are created by 
xdat command. For instance 
 
constant harvestcost,logprice,private = 100,230, 2 

creates three new variables (if they do not already exist) and gives values to these 
constants. These constants can then be used as parameters in transformations or 
domain specifications when defining the linear programming problem. For instance: 
 
xtran 
income.1=volume.1*(logprice-harvestcost) ! income during first period 
/ 
problem 
owner=private: 
income.1 > 1000 
... 

We can use standard transformations defined in an include file and load current 
parameters from a second include file.  

Command xdat creates automatically constants from the file names. For instance, 
command 
 
xdat south.xda,north.xda 

creates constants 'south' and 'north' with values 1 and 2. If data file names start with 
a digit  then letter 'd' is prepended to the name (e.g.  constant 'd21' is created from file 
name 21.dat ). If the data file name is not a valid variable name, (e.g. it contains 
characters '%/:'), then no error occurs but the file names cannot be used as constants in 
transformations or domain specifications. Note that the directory specification for x-
data or c-data files can be given using path command. 

D-variables 

D-variables (variables describing data sets) get new values when the data file changes. 
A d-variable 'data' gets automatically the number of the data file, and other d-variables 
are defined by dtran transformations. In dtran transformations all constants can be 
used as input variables. With d-variables one can create parameters for ctran- or xtran- 
transformations or define domains. For instance, assume that  xdat command is 
 
xdat south.xda,north.xda,east.xda 
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Then we can define transformations and domains as: 
 
dtran 
if data=south then logprice=200 
if data=north then logprice=150 
if data=east then logprice=180 
/ 
problem 
data=south & owner=private: 
income.1,-income.4 > 2000 
... 

If data are stored in the JLP-format then dtran transformations are written 
automatically to the '.sav' file. When the saved data are used later, the original division 
into different data files remains (from user's point of view). 

C-variables 

C-variables (class variables) get new values when the treatment unit changes. C-
variables are read from cdat files or made by ctran transformations. Command cvar 
tells what  are the c-variables in the cdat file, and format is given by cform command. 
Constants and d-variables can be used in ctran transformations. A c-variable 'unit' 
gets automatically the number of the treatment unit within the cdat file (i.e. for the 
first unit of a new file, variable 'unit' gets again value one). With c-variables one can 
create parameters for xtran transformations or define domains. C-variables need to 
include variable with name 'ns' which tells the number of treatment schedules for each 
unit. For instance: 
 
cform * 
cdat south.cda,north.cda,east.cda 
cvar ns,owner,distance 
ctran 
logging_cost=a*distance + b ! a and b are defined with dtran or const 
/ 
problem 
owner=private: 
logging_cost min 
... 

The format of c-variables data needs to be one of the following types: 

cform *          ! FORTRAN free format  
cform b          ! the data are in binary sequential file(s) 
cform (10f5.2)   ! FORTRAN format, all data are read in as real variables 

If the format of c-data is the same as the format of x-data, then cform command is not 
necessary. Use of input subroutines written by the system manager is indicated by 
'xform m' command and no cform command is needed in that case either. 

The directory for the files can be given by path command. Commands cdat, cvar, 
ctran and cform can be given at any order before the data are read in by read 
command or at first problem command. 
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By default all cvar variables and output variables of the ctran transformations are 
stored in memory and in '.cdj' file if data are saved in the JLP-format. If some of these 
variables are not used in later problem definitions and there is a shortage of memory, 
then you can define what variables are stored using keepc command. For instance: 
 
cvar ns,c1,-c100 
keepc ns,c6,-c10 

X-variables 

X-variables get new values when the treatment schedule changes. X-variables are read 
from xdat files or made by xtran transformations. Command xvar tells what  are the x-
variables in the xdat file. Constants, d-variables and c-variables can be used in xtran 
transformations. An x-variable 's' gets automatically the number of the treatment 
schedule within the treatment unit. X-variables are used to define constraints and the 
objective function for the linear programming problem. Treatment schedules can be 
rejected using special 'reject' variable. If you have 'reject' among the xvar 
variables then all schedules with negative value of 'reject' are rejected. Schedules can 
also be rejected using xtran transformations: 
 
xtran 
if unit.eq.1.and.s.eq.3 then reject 
if herbicides>0 then reject 
/ 

In the above transformations reject is in fact interpreted as 'reject=-1'. If variable 
reject is read from the data, then its values can be changed in xtran 
transformations. Rejected schedules remain in the data, and they can be accepted again 
with new xtran transformations by giving value 0 to variable reject . For instance, 
no schedules will be rejected after the following xtran paragraph: 

xtran 
reject=0 
/ 

The format of x-variables data needs to be one of the following types: 

xform *          ! FORTRAN free format  
xform b          ! the data are in binary sequantial file 
xform (10f5.2)   ! FORTRAN format, all data are read in as real variables 
xform m          ! use input functions defined by the system manager 

If  xform is 'm', then there need not be cdat or cform commands.  

The directory for the files can be given by path command. Commands xdat, xvar, 
xtran and xform can be given in any order before the data are read in by read 
command or at first problem command. 
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By default all xvar variables and output variables of the xtran transformations are 
stored in memory and in '.xdj' file if data are saved in the JLP-format. If some of these 
variables are not used in later problem definitions and there is shortage of memory, 
then you can define what variables are stored using keepx command before the data 
are read. For instance: 
 
xvar x1,-x100 
keepx x1,x6,-x20 

Selecting the type of a data variable 

Functionally equivalent results can be often obtained by defining a variable as a 
constant, d-variable, c-variable or x-variable. For instance, assume that xtran 
transformations include: 
 
income=price*volume 

If the same price applies everywhere, then the variable 'income' will get the same 
values if variable 'price' is given a value within const command or within dtran, 
ctran or xtran transformations. But with const the value of 'price' is given  only 
once while using xtran, for instance, JLP creates a vector having as many elements as 
there are treatment schedules, and each element has the same value. In large problems 
it is useful to keep variables at the highest possible level, or at least above the x-variable 
level. 

It is possible that a variable with a given name belongs to two or more variable levels 
simultaneously (e.g. the variable is both among cvar and xvar variables). However, 
this  will probably cause trouble if it is not carefully taken into account how different 
variables get their values (see section 2.5.1). 

2.5.3 Transformations 

New variables can be created with transformations. The same transformation compiler 
is used for dtran-, ctran- and xtran transformations and to interpret domain 
specifications in problem definitions. Compiled transformations are fast to compute.  

Dtran transformations (transformations defined after dtran command) are computed 
when the data file changes. Ctran transformations are computed when the treatment 
unit changes. Xtran transformations are computed as the treatment schedule changes.  
Transformations should (if their use can be anticipated) be defined before the data are 
read in at the first problem command or using read command. When data are read in, 
then ctran- and xtran transformation definitions are cleared (not dtran 
transformations). One can later define new transformations, and these new 
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transformations will be computed automatically when the next problem command is 
encountered or when computation is explicitly required with make command (both 
read and make are optional commands).  The syntax of transformations is similar to 
the FORTRAN syntax except that all functions must be written in lower case. For 
instance: 

x5=sin(x2**2+sqrt(log(x4-2))) 
if (x3+x2=4 .or. sin(x3)>0.5) then    ! outer parentheses are not necessary 
x7=x5-7 
else  
x4=x3**2.2+tan(x5) 
end if 

Transformations are defined in dtran, ctran, and xtran paragraphs. If there are old 
transformations (i.e. an xtran paragraph, for instance, is given for second time before 
the transformations are actually computed), then new transformations are appended to 
the old ones. One can clear all previous compiled transformations at any time by 
entering 'transformation' clear. Ctran and xtran transformations already computed 
and stored in the memory cannot be withdrawn. All previously defined dtran 
transformations can be cleared. When defining new transformations, existing variables 
can be used as output variables (the old values will be replaced). Examples: 

xtran 
x1=0 
/ 
prob   ! after this we cannot recover what x1 was earlier 

If we had noticed before the prob command that we were accidentally zeroing 'x1' 
we could prevented this: 

xtran 
clear 
/ 
prob   ! x1 is what it used to be 

Arithmetic operations 

Standard **,*,/,+, and - operations are available. In addition there is an additional "–
operation for raising a variable to an integer power (internally all  data variables are 
REAL*4). For instance, (-1)"2=1 but (-1)**2 is undefined. Integer powers, when 
applicable are faster to compute and are defined for negative arguments. The hierarchy 
of operators is: ",**,*,/,-,+. 

 Supported FORTRAN intrinsic functions 

abs(x)            = absolute value  of x 

atan(x)           = arctangent, result is in radians 

cos(x)            = cosine, x in radians   
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cosd(x)           = cosine, x in degrees 

exp(x)            = exponential 

int(x)            = truncation to integer 

log(x)            = natural logarithm              

log10             = log base 10  

max(x1,...,xn)    = largest value of x1,...,xn 

min(x1,...,xn)    = smallest value of x1,...,xn 

mod(x1,x2)        = remainder of x1/x2   

sin(x)            = sine, x  in radians 

sind(x)           = sine, x in degrees 

sqrt(x)           = square root 

tan(x)            = tangent, x in radians    

tanh(x)           = hyperbolic tangent 

Additional functions  
ran(x)      = uniform random number between 0 and 1, with seed x 

              based on RAN1-algorithm of Press et al. (1986,p. 196) 

x1=swap(x2) = change values of x1 and x2  

Own functions 

As described in Chapter 4.7, the system manager can create transformations that can be 
used in the same way as the predefined functions. The following function is included as 
an example of a 'user defined function': 

npv(interest_percent,income1,time1,...,incomen,timen) = net present value 

Logical operators 

Following logical operators are implemented (below equivalent operators): 

.gt.    .lt.      .ge.     .le.     .eq.    .ne.    .and.   .or.     .not. 

 >       <        >=        <=        =               & 

Constant � 

In transformations one can use � with name '.pi': 
 
atd=90*atan(x)/.pi    ! arctangent in degrees 

If ... then  structures  

Examples: 
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if unit=1 then cost=cost+1      ! one-line if, this is equivalent to: 
if (unit.eq.1) then cost=cost+1 
 
if data=south.or..not.(sitetype<3) then 
cost=2 
price=4 
end if 
 
if data=south then 
cost=2 
else 
cost=2.7 
end if 
 
if data=south then cost=3 
np=npv(3,100,0,200,3)   ! this is computed always 
then price=2            ! the previous test remains valid  
diff=income.2-income.1  ! there can be transformation between 
else price=3 

Note that unlike in FORTRAN, 'then' is necessary also in one-line if statement. No 
nested if...then structures are allowed. After one if...then statement, the test remains in 
effect and can be used in one-line 'then' or 'else' statements. No error will occur if 
'if...then...(else)' structure is not closed with 'end if', all statements after 'then' belong 
also in that case to the range of 'if...then'. 

Loops  

Transformations can contain simple loops. Examples: 
out=0   ! initialize out 
%5:out=out+%x1   !out= x1+x2+x3+x4+x5 
%4:%z1=%x1 +  %y1  !z1=x1+y2; z2=x2+y2 
out2=0 
%3:out2=out2+x1"%   !out2=x1+x1"2+x1"3 
out3=0 
%3,2:out3=out3+%x1 +%  !out3=x1+1+x3+2+x5+3  
%3:      ! loop can contain several lines 
tmp=%x1/%   ! tmp=x1/1 ; tmp=x2/2 ; tmp=x3/3 
%z1=tmp*%y1 ! z1= tmp+y1 ;z2= tmp 
%end 

Loops begin with '%n' where n tell how many times the loop is done. Character '%' in 
front of a variable tells that the variable number is incremented at each iteration. The 
default increment is one. If the loop begins '%n,i' then the increment is i. Within 
transformations variable '%' gets values 1,2,..,n (even if the increment i is greater than 1, 
%-variable is incremented by steps of one). The variable numbers are incremented 
without a reference to names of variables. Consecutive new variables are created by 
const, xvar and cvar commands, and by dtran, ctran and xtran transformations. 
For instance, let xvar command and xtran transformations be: 
 
xvar x1,y1,x2,y2 
xtran 
out=0 
%3:out=%x1 
/ 
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Then variable out gets  value x1+y1+x2. One cannot create new variables within a 
loop. New consecutive variables can be created using const command: 
 
const out1,-out4 
xtran 
%4:%out1=%x1+%z1 
/ 

If variables out1,-out4 did not exist and were not created with const, then only 
variable out1 will be created properly. 

If a %-loop of several statements is initialized and not closed properly, then everything 
after the beginning of the loop is computed once (i.e. the loop is ignored), and no error 
occurs.  

2.5.4 Saving data in JLP format  

Data can be stored in a special JLP-format. If the x-variables data exceed the memory 
reserved, the initial part of the x-data is stored automatically in this format. The data 
are saved if one uses the following command: 
 
save filename 
 

The exact effect of the save command depends where the command is given. If the 
data are not yet read in, data are saved later at the time when the data are read at 
problem or read commands. If the data have been already read in, then the data are 
saved immediately. This makes a difference in case x-data exceed the memory. If save 
command is not given before reading data, then a part of x-data (treatment schedules) 
are written twice, first to a scratch file when reading data, and then to a named file 
when saving data. New variables created during the session can also be  saved with 
save command. If new variables have been already created, then saving is done 
immediately, in other case at the same time as new variables are created with problem 
or make commands. Even if there are unsaved variables, the saving can be postponed 
to the next time new variables are created by giving command in form: 

save/later filename 

When the data are stored, three files are created. A binary file filename.xdj  contains the 
x-data. Another binary file filename.cdj contains the c-data (variables describing  
treatment units). A text (ASCII) file filename.sav contains const-, xdat-, keepx–, 
keepc-, dtran- and unsave commands that are needed to read in data stored in 
JLP-format. The file contains also the history of the file as comments. The saved data 
can be read with command: 
 
include filename.sav 
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The following example with the data used in section 2.3.1 shows that significant 
savings in computer time can be obtained with saving  data in JLP -format. 
jlp>incl ex.in/*save:* 
> *save 
> xdat savo.xdb 
... 
> time 
starting timing.. 
> read  ! data can be read in with read command, this is not necessary 
reading xdat-file: savo.xdb 
reading cdat-file: savo.cda 
number of calculation units, schedules: . . . . .     433  12100 
... 
> time 
elapsed: 27.00000 total: 27.00000 
> save savo !saves data with JLP -format 
**definitions saved in file: savo.sav 
       c-data saved in file: savo.cdj 
       x-data saved in file: savo.xdj 
> init  !get a fresh start 
> time 
elapsed: 6.617187 total: 33.61718 
> incl savo.sav  ! this will read in saved data 
>  ** saved data:* 
>  xform b 
... 
>  ;# of units in files   433 
>  ;total number of schedules:       12100 
>  ;number of rejected schedules:            0 
>  unsave savo.cdj    savo.xdj 
> time 
elapsed: 5.349609 total: 38.96679 
jlp> 

With save command the data are written to binary files with a special record structure 
(see section saveform in the reference manual). Data can be written to disk with a 
simple record structure similar to the structure of xdat and cdat input files using 
write command. This is needed, e.g., when transferring data in ASCII files to a 
different computer system. 

2.6 Problem Definition 

LP-problems are defined in problem paragraph. One problem paragraph may specify 
several RHS's, and which problem is actually solved depends on the solve command. 
A problem paragraph consists of sections: 
 
domain1: ... domainn: 
constraint (or objective) 
... 
constraint  (or objective) 

Each domain in a domain specification line applies to all x-variables in the following  
constraints. 
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2.6.1 Domains 

If the domain consists of all treatment units, then the domain specification is given as: 
 
all: 

If this is the first domain in the problem paragraph, the domain specification can be 
omitted. 

An ordinary domain specification is given by a logical statement determining when the 
domain applies. The transformation compiler interprets a domain specification in form: 

if (domain specification) then (domain applies) 

In the domain specification one can use constants, d-variables and c-variables as well as 
arithmetic operations, for instance: 
 
data=south.and.(owner=private.or.sin(elevation)+altitude.gt.10) : 
(unit>2.and.unit.le.237).or.sitetype=wasteland : 

Note that the colon  ':' is used to indicate the end of a domain definition. A domain can 
consist even of a single treatment unit only. See section 2.7.2 for printing domains, i.e., 
domains that are used to classify units only in the printing of an LP solution. 

2.6.2 Constraints 

The form of a (utility) constraint line is either: 

x-variable_list range_1 / range_2 / .... 
  or 
coef1*var1+coef2*var2 + ..coefn*varn.  range_1 / range_2 / .... 

Examples: 

income.1,-income.5 = 10000 />800 <1500 / >750 
-y1+income.2 + 1.6*S1-S2 - 1.28*L1+L2 = 0 ! income.2 only is an x-variable  

The x-variable list in the first alternative may contain several x-variables.  Variables in 
the second alternative may be x-variables and z-variables, i.e. nonnegative variables 
that are needed to define a linear programming problem. If the coefficient is one, it can 
be omitted. Z-variables are always global, i.e., they do not relate to domains. If domain 
specific z-variables are needed, they should be created explicitly. For instance,  if in a 
goal programming problem there are target levels for both savo and karelia, then the 
problem paragraph should contain separate slack and surplus variables for both 
domains: 

prob 
data=savo: 
income.1 -savosurplus.1 + savoslack.1 =   800000 
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.... 
data=karelia: 
income.1 -kareliasurplus.1 + kareliaslack.1 =   600000 
... 
/ 

RHS Range  

A specification for a RHS range is some of the following types: 

= 100 
>100 
<200 
>100 <200 
<200 >100 ! equivalent to the previous one, no special order for '>' and '<' 

The RHS's to be used when the problem is solved are selected with solve command 
described in section 2.7.1. 

Chapter 4.8 describes how the system manager can develop own methods for 
generating RHS's. These methods can use the range specifications given in problem 
paragraph as parameters.  

2.6.3 Objective  

The objective function and the type of the problem is given as follows: 

coef1*variable1+coef2*variable2 + ...    max 

  or 
coef1*variable1+coef2*variable2 + ...    min 

If there were several domain specifications in the previous domain specification line, 
the first domain applies. For instance: 

problem 
all: data=south: data=north 
incomed.1,-incomed.5=0 
presentvalue max 
/ 

Now the domain for the objective variable is 'all:' 

The objective row can be anywhere in the problem paragraph and it can belong to any 
domain. It is not necessary to have objective row at all. If no objective function is given, 
JLP just finds a feasible solution when it is asked to solve the problem (it is possible to 
ask JLP to find a feasible solution even if objective function is included) 

2.6.4 Using different domains on the same row 

It is assumed that the x-variables on an objective or constraint row are all in the same 
domain.  For instance, if it is required that variable volume.1 should be equal in Savo 
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and Karelia, then this constraint can be expressed as follows using extra z-variables to 
define global domain specific x-variables: 

data=Savo: 
savovolume.1-volume.1=0  ! this defines volume.1 in Savo as a global   
                         !   z- variable 
data=Karelia: 
kareliavolume.1-volume.1=0 
savovolume.1-kareliavolume.1=0 ! this constraint can be after any domain 
!              specification as it contains only global z-variables  
 

2.7 Solution 

2.7.1 Selecting the problem to be solved 

JLP starts solving a problem when it gets command solve. If several RHS's are given 
in the problem paragraph, then the appropriate RHS can be selected as follows: 
 
solve    ! Solves the problem corresponding to first right-hand side. 
solve 3  ! Solves the problem corresponding to third right-hand side. 
         ! If for a constraint the are not 3 RHS's, the last one is used. 
         ! If no constraint contains 3 RHS's, return to read new commands. 
solve +1 ! Solves the problem corresponding to the next right-hand side. 
         ! The RHS counter must be initilized with 'solve' or e.g. 'solve 5'  

If the number of ranges in a constraint line is less than the number of column given in 
the solve command, then the last range is used. If no constraint line has enough 
ranges, no problem is solved. 

If the system manager has written an own subroutine to generate RHS's (see Chapter 
4.8), this subroutine is called when solve command is given with an option starting 
with 'm'. For instance: 

solve/myown 3 

If no objective function was given in the problem paragraph, solve will find a 
feasible solution. JLP will find only a feasible solution even if the objective function was 
included, if solve command is replaced with feasible command.  The syntax for 
feasible command is the same as for solve. 

Timing comparisons are meaningful only if solve is given with option /i that forces 
JLP not to use the previous solution as the starting point. 

2.7.2 Printing options 

This section describes JLP commands controlling how the solution is printed. An 
interpretation of the shadow price and marginal cost variables printed is in the next 
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section (2.7.3), a mathematical description is given in Chapter 6.4. Chapter 4.10 
describes how the system manager can write an own report writer. 

Printing rows and x-variables 

After solving a problem, JLP prints the solution (if printlevel>0). Values of rows 
and z-variables are always printed. User can determine with show command what else 
is printed. The same solution can be printed with different show options using recall 
command. The format of the show command is as follows: 

show(options) variable_list 

The most important options are (see Reference Manual for more details, and how to 
negate the following options):  
/nox      ! print no x-variables 
/noxfirst ! print no x-variables automatically after solution,  
          ! print x-variables information only with recall command 
          ! as specified with other show options 
/all      ! print all x-variables (default) 
/prob     ! print variables used in problem 
/cost     ! compute cost of decrease and cost of increase for x-variables 
            (default) 
/nocost   ! costs are not computed 
/int      ! compute the integer approximation 
/domains  ! start paragraph that defines domains that are used when  
            computing x-variables (in addition to domains used in the problem)  
/nodom    ! do not use extra printing domains 

The computation of cost of decrease and cost of increase of x-variables may take quite a 
lot of time. As a rough approximation the time used to  compute the values of x-
variables and costs is 

(number of x-variables)*(number of domains)
number of rounds through units in optimization   x (optimization time) 

 The main part of time is spent in computing costs (this part of the software is new, 
currently it is not well optimized and tested). The user may wish that this information 
is not computed. The purpose of /noxf option is to allow the user first look the rows of 
the solution, and then get a more detailed output with recall if the solution is 
interesting. 

The integer approximation is computed so that only the schedule with largest weight is 
applied in each unit. No integer optimization is done, and the integer approximation 
does not generally satisfy the constraints.   

The optional variable list in the show command tells what variables are printed in 
addition to the variables appearing in the problem. 
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Section 2.3.4 contains an example of the use of show  both with /dom option and 
variable list. Another example: 

show/nodom/dom !/nodom clears previous domains /dom tells that new ones follow 
owner=private: ! remember colon 
owner=public & site = wilderness: 
/ 

Reprinting  the last solution with other options 

JLP prints the solution automatically after solving the problem using the current show 
options except if /noxf option is in effect. If the show options are changed, or if the 
printing parameters have changed, or if the user just wants to see the results again, the 
solution can be printed again with recall command. If /noxf option is in effect, then 
the current show options are used for the first time at recall. 

Printing weights and shadow prices of schedules  

After solving a problem, information about weights and shadow prices (marginal 
values) of schedules can be printed using sched command. This command has the 
following options: 
 
sched          ! print all basic schedules (schedules used in the solution) 
sched n        ! print at most n schedules 
sched/all      ! print also values of nonbasic schedules 
sched/all n    ! print at most n schedules 
sched/all>95   ! print all schedules whose shadow price > 95% from the 
               ! value of the basic schedules of the unit 
sched/all>95 n ! print at most n schedules 

Example: 
jlp>sched 100 
value% of unit: % is from sum of unit values  33459072.9 
  
  unit  value%  sched     %     sched   % 
    1  0.217174    8  100.0000 
    2  0.208857    4  100.0000 
    3  0.015557    2  100.0000 
... 
   82  0.187835   40  100.0000 
   83  0.262362   21  58.80239   27  41.19760 
   84  0.176998   16  100.0000 
   85  0.074584    4  100.0000 
   86  0.198073    3  100.0000 
   87  0.162058   17  100.0000 
   88  0.153418    2  67.96054    3  32.03945 
   89  0.112786    1  100.0000 
   

The unit and sched columns tell the unit number and schedule numbers for basic 
schedules. The '%' column is the weight of the schedule multiplied by 100. There can be 
several basic schedules in a unit.  The value% column tells how many per cents is the 
shadow price of the unit from the sum of shadow prices of all units.  Thus the value% 
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column adds up to 100. The shadow price of unit 1 in the example is 
0.00217174*33459072.9 = 72664.4.  

The printing format is different with the sched/all option: 
jlp>sched/all>99.5 150 
  unit sched  value% of s   share%   value% of unit 
    1    8    100.0000    100.0000    0.217174 
    2    4    100.0000    100.0000    0.208857 
... 
    6    2    100.0000    100.0000    0.068647 
    7    1    100.0000    100.0000    0.026881 
    8    2    99.92227                0.011231 
    8    4    100.0000    100.0000 
    9    1    100.0000    100.0000    0.184652 
... 
   83   12    99.55764                0.262362 
   83   21    100.0000    58.80239 
   83   27    100.0000    41.19760 

This option prints all schedules on separate lines. The share% column is the weight of 
the schedule multiplied by 100 (= % column in the first format). The column 'value% 
of unit'  tells how many % is the shadow price of the unit from the sum of shadow 
prices of all units (= value% column of the previous format). Column 'value% of s' 
tells how many percent the shadow price of the schedule is from the shadow price of 
the unit. This is at least as great as the specified printing limit. For all basic schedules 
this figure is 100.  For rejected schedules, the 'value% of s'  may be over 100. For 
instance, let us solve the same problem as above after transformation: 
> xtran 
> if unit=2.and.s=4 then reject  ! this was a basic schedule above 
> / 

We will then get a slightly different solution and: 
jlp>sched/all>99.5 80 
value% of unit: % is from sum of unit values  33458479.3 
  
  unit sched value% of s    share%   value% of unit 
    1    8    100.0000    100.0000    0.217178 
    2    3    100.0000    100.0000    0.207087 
    2    4    100.8566    rejected 
    3    2    100.0000    100.0000    0.015557 

2.7.3 Marginal analysis of the solution 

The dual problem of an LP problem can be used to analyze marginal changes of the 
objective function caused by slight modifications of the original problem. Chapter 6.4 
describes in more detail the mathematical basis of the marginal (dual) analysis of the 
problems solved by JLP. This section indicates how to interpret the marginal price 
information JLP computes.   

A marginal change of the objective function has the following meaning. Assume that a 
constant in a problem has value �, and the objective function has the value z0. If z0+ is 
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the value of the objective function when the problem is solved replacing constant with 
a new value �+���then (z0–z0+)/��is the�marginal change in the objective function. In 
linear programming, (z0–z0+)/� is independent of � provided that � is so small that the 
current basis does not change. The marginal changes of the objective function may be 
called, depending on the context, marginal prices, or shadow prices, or reduced costs. 
In forest management planning problems where both the number of treatment units 
and the number of simulated schedules are relatively large, and the schedules follow 
the same logic of forest growth, the marginal prices may change quite little even if the 
basis will change.  

Shadow price of a utility constraint  

The shadow price of a constraint is the marginal change of the objective function when 
the RHS of the constraint is increasing. The effect of decreasing the constraint is the 
opposite. JLP prints automatically the shadow prices of the utility constraints. The 
shadow prices are for the lower or upper bound depending which one is active 
(character 'L' or 'U' indicates this in the printed solution).  Note that for an equality 
constraint (lower bound and upper bound are equal), either the lower or the upper 
bound is active. The following table shows how the sign of the shadow price (�) is 
determined: 
 

active bound 
              the objective function is 
        maximized               minimized 

lower  bound ��������� ��������� 

upper bound ��������� ��������� 

no active bound ��������� ��������� 

The signs can be heuristically inferred as follows. If the lower bound is active, then 
increasing the lower bound will make the constraint more restrictive, and the objective 
function will become worse, i.e., smaller for maximization and greater for 
minimization.  

The shadow price of the objective row is set to be one. This is in accordance with the 
equivalent problem formulation where the objective is always to maximize  0  subject 
to the constraint that 

 z

   z0  – (the initial objective row) = 0. 

The shadow price of this constraint would always be one. 
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Shadow price of an x-variable  

The shadow price of an x-variable  xk  is the shadow price of the constraint (1.3) or (1.10) 
that defines    xk  as a sum over schedules. A natural way to interpret the shadow price of 
an x-variable is that it is the marginal utility of a unit of the x-variable obtained from 
other sources and used for satisfying the constraints of the problem. Alternatively, 
marginal change in    xk  may result from a marginal change in a coefficient  of a basic 
schedule j in unit i. 

xk
ij

The shadow price �  of   k  xk  can be expressed in terms of the shadow prices of the utility 
constraints as follows (see Chapter 6.4 ): 

� k � a0k � atk
t�1

r

� �t  (2.1) 

where a  is the coefficient of   tk  xk  on row t and � t  is the shadow price of constraint t.  

Note that if    xk  is present only on one row t and with coefficient one (e.g. the constraint 
is like: final_volume > 1000), then 

� k � ��t , (2.2) 

i.e., the marginal changes in the objective function are opposite if we get an extra unit of 
quantity k from outside or if we require that the treatment units produce one unit more. 
If   does not have a nonzero coefficient in any binding utility constraint, its shadow 
price is zero (which is not printed).  

 xk

When interpreting the shadow prices of x-variables, it should be kept in mind that 
effect of an extra unit of   xk  obtained from another source is taken into account only 
through the explicit constraints and objective function. No implicit meaning or 
implications are taken into account. For instance, in the example in section 2.3.1, the net 
present value variable npv.0 was maximized subject to smoothness constraints for 
incomes: 
> prob 
> income.2-income.1>0 
> income.3-income.2>0 
> income.4-income.3>0 
> income.5-income.4>0 
> npv.0 max 
> / 
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The shadow prices of incomes were: 
     x-variable            shadow  
                           price   
__________________________________ 
     income.1  . . . .  -0.2052712 
     income.2  . . . .  -0.0094556 
     income.3  . . . .  0.12518680 
     income.4  . . . .  0.04850047 
     income.5  . . . .  0.04103964 

This does not really mean that keeping the problem unchanged, the net present value 
would decrease if we will get more income during first period. But the problem 
formulation did not express the direct effect of income to present value. Extra income 
during first period would be just used in constraints, and in this case extra unit of 
income.1 would make the constraints more difficult to satisfy. But we can change the 
objective function to take into account the direct relation between income and present 
value (3% interest rate, 10 year subperiods, incomes in the middle of subperiods, 
income variables are per year incomes): 

> prob 
... 
> 0.228107*npv.5 + 2.644386*income.5 + 3.55383*income.4 + > 
> 4.7760557*income.3 + 6.4186195*income.2 + 8.6260878*income.1  max 
> / 

Note that 0.228107=1/1.0350, 2.644386= 10/1.0345 , etc. If JLP solves this problem, the 
same solution is obtained but, the shadow prices will be (shadow prices are divided by 
10 to transform the per year scale of incomes to absolute scale) : 
     x-variable         shadow  
                        price/10   
_______________________________ 
     income.1  . . . 0.842081784 
     income.2  . . . 0.640916123 
     income.3  . . . 0.490124112 
     income.4  . . . 0.360233488 
     income.5  . . . 0.268542446 

Thus 1 mark of income after 5 years will increase npv.0  by 0.842 marks. Price 8.42 is 
smaller than the coefficient 8.63 of income.1 in the definitions of npv.0. This is in 
accordance with the fact that the shadow price of income.1 in the first formulation 
was negative.  

The shadow prices of incomes can further be converted into interest rates as follows 
(see e.g. Lappi and Siitonen 1985). Let �t be the shadow price of income at time t, and 
let rt=�t/�t+1, then the internal rate of interest, it, between t and t+1 is   it � rt �1 . The 
internal rates of  interest computed from the above shadow prices are: 

1/ d

  i01 � 3.5%,  i12 � 2.8%,  i23 � 2.7%, i34 � 3.1%, i45 � 3.0%  
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The information obtained with the second objective function can be computed from 
results obtained for the first objective function. These relations will not be developed 
further here. The purpose of the above example of the analysis of shadow prices is to 
emphasize that the solution of a linear programming  problem can be properly 
interpreted only if the basic properties of linear programming are understood. 

Cost of decrease or increase of an x-variable 

The optimal solution provides weights w  that can be used to compute the value of an 
aggregated x-variable xk   as 

ij

xk � xk
ijwij

j�1

ni

�
i�1

m

� .
 (2.3) 

The options of show command determine what x-variables are computed. Let �k denote 
the value thus obtained. If we add a constraint that requires that  xk  should have a value 
different from �k.  the objective function will generally change (even if the shadow price 
of xk would be zero). 

The cost of decrease tells how many units the objective function will change if  xk  is 
required to decrease by one unit, and the cost of increase tells how many units the 
objective function will change if    xk  is required to increase by one unit. The costs are 
expressed as positive values, so for a maximization problem, the cost is marginal 
decrease and for a minimization problem, a marginal increase in the objective function. 

It may be that when a constraint is added that requires that  xk  deviates from the 
observed value �k, the resulting problem is infeasible. The corresponding cost can then 
be defined to be infine. Thus the 'INF' printout of  JLP can be interpreted either as 
'infinite' or 'infeasible'. If the objective row in a maximization problem consists of a single 
x-variable, the cost of increase for that variable is automatically infinite. 

For a basic x-variable  xk  (i.e.,    xk  appears in a binding constraint or on the objective 
row) the cost of decrease or increase is mathematically related to the shadow price of 
the variable but it is equal to the shadow price only in special cases (generally only 
when    xk  appears alone on one row). The cost of changing the value of    xk   and the 
shadow price of    xk  are based on different concepts of 'changing the problem slightly'.  
In the former analysis a constraint is added, and the latter analysis a constraint is 
modified.  The cost of changing the value of a nonbasic x-variable may be easier to 
interpret than the cost of changing the value of a basic x-variable. For a basic x-variable, 
the interactions of the additional constraint with the original constraints may not be 
self–evident. 
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Reduced cost of a nonbasic z-variable 

The reduced cost of a nonbasic z-variable tells how many units the objective function 
will change if the z-variable is forced to increase by one unit (from zero). These costs are 
always printed (if printing is allowed at all). 

Shadow price of a treatment unit 

The shadow price � i  of the area constraint (1.4) or (1.11) for unit i is called the shadow 
price of the treatment unit i. If the area of unit i would increase by �%, then the change 
in the objective function would be �� i 100 . The increase of the area by �% means that 
the coefficients  for all x-variables k and for all schedules j in unit i  are increased by 
�%. Marginal changes in the nonbasic schedules do not really have effect on the 
optimal value of the objective function, but it is easier to think that all schedules are 
changed.  

xk
ij

The analysis of the dual problem reveals that the value of the objective function is: 

z0 =�� i
i�1

m
� ct

*

t�1

r

� �t , (2.4) 

where ct
* is the active bound (either ct  or Ct ). 

Thus the shadow prices of the units do not generally add up to the solution. If the 
shadow price of a unit is negative in a maximization problem or positive in a 
minimization problem (and the unit is so small that the marginal analysis is valid), then 
a better solution would be obtained without the unit (thus the unit should be 
immediately sold to someone who does not understand linear programming). 

The shadow price of a treatment unit is equal to the shadow price of any of the basic 
schedules in the unit. 

Shadow price of a treatment schedule 

The shadow price of a schedule is not really a shadow price of a constraint in the 
problem. The shadow price � ij of schedule j in unit i  is here defined as: 

� ij � � k
k�1

p

� xk
ij   (2.5) 

For all basic schedules � ij  is equal to � i , the shadow price of unit i. For a nonbasic 
schedule j, the difference � i � �ij  is the marginal (reduced) cost of forcing schedule j 
into the solution. For a minimization problem, the cost computed as � ij � �i  would 
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express the cost as a nonnegative quantity (costs are assumed here to be always 
positive) 

2.7.4 Input  parameters of the optimization 

There are some parameters that determine how the optimization is done. The current 
values can be seen with parin command. Thereafter new values can be given in format 
'parameter=value', and parin paragraph is ended with '/'. For instance:  
 
jlp>parin 
  start_mode  0.0000     0=norm 1=cont old 2=ffeas 
  start_unit  0.0000 
    maxvisit  0.0000 
      invert   100.0     after given # of changes of basis 
      trace1  0.0000     step # to start 
      trace2  0.0000     step # to stop 
        tole   1.000     coefficient for tolerances 
        wmin  0.0000     = 0 change basis as you can , else =1  
parin>invert=200 
parin>/ 
jlp> 
 

The user may wish to modify following parameters (other parameters are needed in 
tests). Note that if the effect of different options on the optimization time is studied, 
then solve command should be given in form solve/i  so that optimization starts 
always from equal situation (otherwise the key schedules of the previous problem are 
used as the starting point). 

invert  

The basis matrix is reinverted after invert changes in the basis. Default for invert is 
100. A reinversion of the basis takes time but it will remove rounding errors 
accumulated during the stepwise changes of the basis. After finding a solution, JLP 
inverts the basis if the basis has changed more often than 10% of the value of invert. 

wmin   

If wmin=0, then JLP enters a variable into basis even if its value will become zero (i.e. 
the variable will be a degenerate basic variable). If wmin=1 , then variables with value 
zero are not entered. Changing the value of wmin may help if there are problems in the 
optimization (see Chapter 5.3) 

tole 

JLP tries to figure out what is the range of rounding errors. If the estimated tolerance is 
too small, JLP may get into trouble in computations. If the estimated tolerance is too 



52  Part  2 User's Guide 

large, JLP may fail to reach the solution (the obtained solution is anyhow reasonable, 
but not necessarily optimal). The tolerances estimated by JLP are multiplied by 
parameter tole. This way the estimates can be corrected, if JLP runs into trouble or if 
the user feels that JLP does not find the optimum. See Chapter 5.3 for more 
information. 

2.7.5 Output parameters of the optimization 

JLP collects information about different steps of the optimization. The summary 
statistics can be seen with parout command.  For instance: 
 
jlp>parout 
        nonfeasible constraint     0. 
             unit last visited    69. 
          rounds through units    15. 
         improvements in units  1839. 
       changes of key schedule   988. 
                      w enters  1005. 
          slack/surplus enters   192. 
                      z enters     0. 
                      w leaves   993. 
          slack/surplus leaves   204. 
                      z leaves     0. 
                 basis changes  1197. 
     changes after reinversion     0. 
     reinversions of the basis    12. 
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3.  REFERENCE MANUAL (FILE jlp.hlp)  

The up to date reference manual is stored in file jlp.hlp which is also used by the on-line 
help. With help command, JLP lists all lines starting with '*'. With 'help key ' 
command, JLP lists the entry between '*key' and ';'. Changes made after the printing of 
this manual will be indicated by '##' in file jlp.hlp. 

Current modules are: 

*batch *buff *buflevel *cdata *cform *command line *constants *ctran *cvar *dir *do 
*domain *dtran *duplicate *end *end do (enddo) *feasible *files *help *helpfile 
*include *init *integer approximation *keepc *keepx *list *make *mela *mrep *outfile 
*outlevel *ownread *own1 *own2 *parin *parout *path *pause *printlevel *problem 
*read *recall *reject *report *save *saveform *schedules *show *solve *split *system 
*time *title *transformations *unsave *values *variables *write *xdata *xform *xtran 
*xvar  

The current help file is listed below: 
 
** file jlp.hlp *** 

 (SYS.DEP) = the property is system dependent (see Part 4 for details) 

 (not cmd) = the keyword is not a JLP command 
; 

*batch - JLP is running in batch mode. 

Use as first command in batch mode. In batch mode, the run is terminated with 

fatal errors, and prompts are not printed when reading commands. 
; 

*buff  - (SYS.DEP.) Calls user written interface subroutine 'buff'. 

'Buff' can be used to make an interface that sends commands to JLP and reads 

and interprets the results. The subroutine template provided with JLP just 

prints the output buffer (controlled by 'buflevel')  and reads commands from 

the terminal.  

see also: buflevel, ownr, Chapter 4.11 
; 

*buflevel -(SYS.DEP.) Gives the amount of output send to the output buffer. 

Usage: bufl i ! i= 0, 1, 2,....  Larger values of i indicates more output to 

the internal output buffer: 

0 = no output (default) 
1 = only solution and problem definition 
2 - 8 more and more output 
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Use only if your own routines have the full control. If buflevel is given 

negative value, then the subroutine 'ownwri' is called for each line to be 

printed. A template for 'ownwri' is given in file 'jlpint.src'. Currently the 

optimization algorithm prints information about how the optimization proceeds 

only to the terminal. 

see also: printlevel, outfile, outlevel 
; 

*cdata - Defines the names of the c-data files.   

Usage: cdata file1,...,filen  

It is recommended that names of text (ASCII) files end with ".cda", and names 

of binary files end with '.cdb'. (Files saved in the JLP-format end with 

'.cdj'.) During reading, JLP adds the directory specification given by 'path' 

command to the names. If 'xform m' is in effect, then the user subroutines may 

or may not utilize the names in cdat command (SYS.DEP.).  

see also: cform, cvar, xdata, xform, save, path 
; 

*cform  - Defines the format of the c-data. 

Usage: cform form ! where  

form =  *    if c-data can be read with FORTRAN '*' format 
        b    if c-data are in binary files 
    (8f10.0) any FORTRAN format 

If cform is not given, JLP assumes that cform is the same as xform. All 

variables given in 'cvar' are read with one FORTRAN read statement. If xform 

is 'm' then cform is also assumed to be 'm' (i.e. cform command is not used to 

determine what subroutines JLP calls, it can be used to carry information to 

data access subroutines (SYS.DEP.)). 

see also: cdata, cvar, xform 
; 

*command line (not cmd) - Syntax of a command line. 

A command line can contain spaces and tabs. The 'command' in a command line is 

the initial nonblank part of the line. Commands must be in lower case. If the 

last character of a line is  '>' then the logical command line continues to 

the next physical line (record). Commands can be read from terminal (or input 

stream in batch mode) or from files using 'include' command. Command line 

starting with '*', '!', or ';' are comments, and the rest of line following 

'!' is also a comment. If a file or a part of file is included using 'list' 

command, then all lines are treated as comments. Names of commands are checked 

as long as the name is uniquely determined (usually four characters are 

significant). The rest of the command name is ignored. In options (e.g. 

'/all') usually only the first character is significant, except for the 

negations '/nooptio' where usually three characters are significant (i.e. 

'no'+ the option character). The '/' options must follow command name without 
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a space. If the significant part of a name is longer than usually, it is 

indicated in this help file. A paragraph is section of command lines starting 

with a command and ending with '/' (e.g. problem paragraphs and transformation 

paragraphs). Note: 'show' command starts a paragraph only with '/dom' option. 

see also: include, list, help 
; 

*constants - Gives values for (constant) variables.  

Usage: variable_list= value_list  ! These constants can then be used in 

transformations. Example: 

const price1,-price4=2,2*3.1,4 

If dtran-, ctran-, or xtran- transformations calculate sums over data files, 

units or schedules, initial values (usually zeros), can be given with 'const' 

command (or using appropriate 'if ... then var=0' transformation). Current 

values of constants (or any variables) can be seen with 'values' command. Xdat 

creates automatically constants from the file names given in 'xdat' command.  

see also: values, variables, xdat 
;  

*ctran  - Starts paragraph defining transformations made for c-variables. 

Ctran-transformations  are made in order to get variables that can be used as 

parameters in xtran-transformations or to define domains in problem 

definitions. The default is that all output variables are stored. If not all 

output variables need to be stored, then variables stored when data are read 

in are given in 'keepc' command, and output variables to be stored in later 

transformations should be given in 'make' command. 

Examples: 

ctran 
if distance.gt. 200 then 
 harvestcost=2 
else 
 harvestcost=1.5 
end if 
/ 

see also: transformations, xtran, make, keepc 
; 

*cvar - Defines c-variables that are read from cdat files. 

Usage: cvar variable_list  ! Cvar list must include at least 'ns' which tells 

the number of schedules in each file. The default is that all cvar-variables 

are stored in cmat matrix. If only a subset needs to be stored, the stored 

variables are given with 'keepc' command. 

Example: 
cvar c1,-c6,ns 

see also: keepc, xvar, variables 
; 

*dir (not cmd) - How to define directory for input data? 

Directory of data files can be given with 'path' 
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see also: path, files 
; 

*do -   Starts a loop. 

A loop ends with 'end do' or 'enddo'. 

Usage: 

do n 
 (commands) 
end do    !or enddo 

Example: 

solve        ! The RHS counter must be initialized before using 'solve +1'. 
do 10 
solve +1     ! If there are not enough RHS's, iteration terminates 
             ! without error. 
end do 
; 

*domain (not cmd) - Subset of units used in problem or report. 

A domain is a subset of units that can be defined with d- and c-variables. 

Domains can be used in 'problem' paragraph or in 'show/domain' paragraph. 

Examples: 

data=Savo & owner=private:  
unit=23: 
all: 

see also: problem, show, variables 
; 

*dtran - Starts a paragraph defining transformations made for d-variables. 

Usage: 

dtran 
(transformations) 
/ 

Dtran-transformations  are made in order to get variables that can be used as 

parameters in ctran- or xtran-transformations or to define domains in problem 

definition. When data are read in, dtran-transformations are made always as 

JLP starts reading new cdat- and xdat- files. In later transformations, JLP 

remembers the original file sturucture, and dtran-transformations are made 

when first unit of a cdat- and xdat- file is in turn. Dtran-transformations 

remain in effect also when using data saved in JLP format. The automatically 

created 'data' variable can be used in transformations.  

Examples: 

dtran 
if data=NorthKarelia then harvestcost=2 
else harvestcost=1.5 
/ 

If you have given xdat-command 'xdat north.xda, south.xda' you can make dtran-

transformations as: 

if data=south then ... 

Output variables of dtran-transformations are not stored anywhere, they are 

just computed again when needed, and new transformations are appended to 
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previous ones. All dtran transformations can be cleared (unlike computed ctran 

or xtran transformations) as follows: 

dtran 
clear 

/ 

see also: xtran, transformations, variables, xdat, save 
; 

*duplicate - Defines transformations describing duplication of schedules. 

Usage: 

dupl 
(transformations) 
/ 

If dupl- transformations determine a nonzero value for variable 'duplicate' in 

a schedule, then JLP makes that many NEW copies of the schedule. The total 

number of copies will thus be duplicate+1. Thereafter JLP makes xtran-

transformations for each copy. Before computing xtran-transformations, JLP 

assigns the number of the copy (starting from zero) to the variable 

'duplicate'.  

Example: 

dupl   ! duplicate all schedules with clearcutting during first period 
if clearcut.1.gt.0 then duplicate=1 
/  
xtran   ! separate manual and harvester clearcuttings 
if clearcut.1.gt.0 .and. duplicate=1 then 
manpower=10*cutvolume.1  
harvestertime= 2.5*cutvolume.1 
else 
manpower=70*cutvolume.1 
harvestertime=0 
end if 
/ 

Thereafter there can be problems with constraints for manpower and 

harvestertime even if original data did not separate the two harvest method. 
; 

*end  - (SYS.DEP.) Return to the main program. 

The standard main program prints the output buffer, and stops. In user JLP-

implementation 'end' can be used to get the control to interface level.  
; 

*end do or enddo  - End of the do loop 

see also: do 
; 

*feasible   - Finds a feasible solution. 

The syntax for selecting RHS is the same as for 'solve'. If the solution is 

thereafter asked with 'solve' command, JLP starts directly from the feasible 

solution. If no objective was defined in 'problem' paragraph, JLP finds a 

feasible solution also with 'solve' command. 

see also: problem, solve 
; 
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*files (not cmd)  (SYS.DEP.) - Opening of old or new files. 

The way new files are created is determined by $LIST and $VERSIONS options in 

file jlp.par. The $LIST option determines the carriage control keyword used 

when opening output ASCII files. If $VERSIONS option is set, then JLP adds a 

'_(nro)' -version number when opening a new file with the same name as an 

existing file.  $READONLY option specifies an possible nonstandard keyword 

when opening existing files for reading. See file jlp.par for more details. 
; 

*help  - How to get on-line-help? 

Usage: help ! List '*' lines in this help file. 

       help keyword ! List the help module for keyword. Keywords that are not 

commands are followed by (not cmd). A keyword must be written so far that it 

can be uniquely determined (first match is always printed). Modules or 

features that are dependent on the implementation of JLP are indicated by 

(SYS.DEP.). The system manager should edit these modules. If the significant 

part of the command is longer than 4 characters, it is indicated. 

Current commands (significant part underlined):  

 batch buff buflevel cdata cform
 const ctran cvar do dtran
 dupl end enddo feasible help
 helpfile include init keepc keepx
 make mrep outfile outlevel own1
 own2 ownread parin parout path
 pause printlevel problem read recall
 report save sched show solve
 split system time title unsave
 values write xdata xform xtran
 xvar  

(SYS.DEP.): own1 and own2 are replaced by commands given in jlp.par. 

help         is equivalent to:      list/all jlp.hlp/* 
help key     is equivalent to       list jlp.hlp/*key:; 

see also: helpfile, command line, list 
; 

*helpfile  - Changes the help file. 

Usage: helpf file !(5 characters required: 'helpf')  New helpfile is 'file'. 

The default is jlp.hlp. Command 'helpf' without file makes jlp.hlp the current 

help file. The help file contains cells starting with '*keyword' and ending 

with ';'. The user can freely edit the help file. 

see also: help 
; 

*include - The command interpreter will read commands from a file. 

Usage: 

include  filename         ! The whole file is included 
incl file/addr1:addr2     ! The first line included starts with addr1  
                          ! and the last line included starts with addr2. 
incl file/addr            ! Only the line starting with addr is included. 
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incl/all file/addr1:addr2 ! All matching sections are included. 
incl/a  file/addr         ! All lines starting with addr are included. 
incl ?opt.sav ?opt.def    ! If file 'optdat.sav exists then include it. 
                          ! If it doesn't, include opt.def.   

Include-files (including list-files) can be nested to 6 levels.  

see also: list 
; 

*init - Gets a fresh start. 
; 

*integer approximation (not cmd)  

If '/integer' option of the 'show' command is in effect, JLP computes the 

values of x-variables resulting when for each unit only the schedule with 

largest weight is applied. 

see: show, recall 
; 

*keepc - Defines c-variables to be stored in memory when reading data. 

Usage: keepc variable_list ! (5 characters significant: 'keepc'). 

When data are read in, the default is that all cvar-variables (variables read 

from cdat-files) and output variables of ctran-transformations are saved in 

the memory. If only a subset of those variables are needed, give them with 

keepc-command. See 'make' for storing output variables of ctran-

transformations defined after reading data. 

see also: cvar, make, variables 
; 

*keepx - Defines x-variables to be stored in memory when reading data. 

Usage: keepx variable_list ! (5 characters significant: 'keepx') 

When the data are read in, the default is that all xvar-variables (variables 

read from xdat-files) and output variables of xtran-transformations are saved 

in the memory. If only a subset of those variables are needed, give them with 

keepx-command. See 'make' for storing output variables of xtran-

transformations defined after reading data. 

see also: xvar, make, variables. 
; 

*list - Lists files or parts of them. 

List will be used exactly as include-command except all lines are treated as 

comments.  

Usage: 

list  filename            ! The whole file is listed 
list file/addr1:addr2     ! The first line listed starts with addr1  
                          ! and the last line listed starts with addr2. 
list file/addr            ! Only the line starting with addr is listed. 
list/all file/addr1:addr2 ! All matching sections are listed. 
list/a  file/addr         ! All lines starting with addr are listed. 

Short headers of source files (e.g. jlpsub.src etc.) can be listed as follows: 

list/all jlpsub.src/*=:** 

Longer headers can be listed: 
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list/all jlpsub.src/*=:*** 

The short header of a named module (e.g. 'ilfind') can be listed: 

list jlpsub.src/*=ilfind:** 

On line help is implemented using 'list' command. 

see also: include, help 
; 

*make  - Makes new variables when data are already read in. 

Usage:  
make               ! Make all defined new variables. 

make variable_list ! Make only variable_list variables. 

New variables are defined in ctran- or xtran-transformations. The default is 

that the output variables of transformations defined after reading data are 

stored, except special x-variables 'split' and 'duplicate'. If no 

variable_list is given, all new output variables are stored. Variable_list 

should contain both c- and x-variables that are needed later. If all new 

variables are stored, then 'make' is not necessary: new variables are 

automatically created at 'problem' or 'solve' commands. 

see also: dtran, ctran, xtran, keepc, keepx, save 
; 

*mela (not cmd) - MELA/ JLP relation. 

For JLP, Mela is an implementation of the special data format 'xform m', and 

report generator implemented behind command 'mrep' or option 'show/mrep' 

command. For more information, consult Markku Siitonen, The Finnish Forest 

Research Institute. 
; 

*mrep  (SYS.DEP.) - Calls user's own special report writer. 

If JMAKE option $MREP in jlp.par is in effect, JLP calls subroutine 'mrep'. If 

option 'show/mrep' is in effect, then report is always generated with this 

generator instead of the standard report writer. For JLP, user report 

generators 'report' and 'mrep' work exactly in the same way. It is intended 

that 'report' could be a general report writer and 'mrep' a report writer 

associated with 'xform m'. 

see also: show, recall, solve, report 
; 

*outfile (SYS.DEP.) - Opens (or closes) a file for additional output. 

Usage: outfile File ! Open output file 'File' 

       outfile      ! Close the current output file. 

Depending on the $VERSIONS option in file jlp.par, file may be opened with 

version number added to the name. Option: 

outf/s   ! (SYS.DEP.) Additional output is written to unit NUOUT defined in 

jlp.par without opening the file first. It is assumed that the file is/will be 

opened by the operating system or the main program.  
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see also: outlevel, printlevel, write, files 
; 

*outlevel - Amount of output to be written to outfile. 

Usage: outlevel i ! where i is: 

0     = no output to outfile (default) 
1     = only solution and problem definition 
2 - 8 = more and more output 

The outlevel-parameter works exactly as printlevel-parameter, except currently 

the optimization algorithm prints information about how the optimization 

proceeds only to the terminal (controlled by 'printlevel'). 

see also: outfile, printlevel, buflevel, buff 
; 

*ownread  (SYS.DEP.) - Replaces terminal input with an own subroutine. 

When JLP would normally read commands from input terminal, it will instead 

call the user subroutine ownrea. Input from include files is not affected. 

This may be useful when building an own interface. 

see also: buff, buflevel 
; 

*own1  (SYS.DEP.) - Executes a user defined command. 

When getting a command with a name given in $OWN1 option in jlp.par, JLP will 

call user subroutine own1 that may do something useful. 

see also: own2 
; 

*own2 (SYS.DEP.) - Executes another user defined command. 

Command name is given in $OWN2, and subroutine own2 is called. 

see also: own1 
; 

*parin - Lists and defines input parameters of optimization.  

JLP lists first current parameters. Thereafter JLP expects a paragraph 

defining new values for input parameters of the LP-algorithm. User may wish to 

change the 'invert' parameter that tells how often the basis is reinverted. 

Other parameters are of interest when there are difficulties in the 

optimization. 

Examples: 

parin 
invert=200 ! reinvert the basis after 200 changes. 
/ 

parin 
/ ! List only parameters, '/' ending the paragraph is necessary. 

see also: parout 
; 

*parout  - Lists output parameters of the JLP optimization algorithm. 

The output parameters are related only to the technical details of the 

optimization. 

see also: parin 
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; 

*path - Defines directory for input data files. 

Usage: path directory ! Directory is added to cdat-, xdat-, and unsave- 

file names. Note that command line 

path <inventory.dat> 

means that the command line continues to the next line. The command line ends 

where it is intended if '!' is put to the end of line: 

path <inventory.dat>  ! 

If JMAKE option $READONLY is properly defined in jlp.par, the directory can 

belong to another user who has granted reading rights (SYS.DEP.)  

see also: xdat, cdat, unsave 
;  

*pause - Pause until <ret>. 

May be useful for following the program flow when commands are read from 

include files. Has no effect in batch mode. 

see also: batch 
; 

*printlevel - Determines the amount of printed terminal output. 

Usage: printl i ! i= 0 or 1 or 2 or .....  Larger values of i indicates more 

output: 

0 = no output 
1 = only solution and problem definition 
2 - 8 more and more output 

see also: outlevel, outfile, buflevel 
; 

*problem  ! Starts problem definition paragraph.  

Examples: 

problem 
x1>0        / > 110 />200 />300    ! defines several lower bounds 
x2>0   / >120 <200                 ! both upper and lower bound 
x3+2*x1-x3 >0     / >130           ! linear combination of x-variables 
zvar-2*x3=0                        ! zvar is a z-variable 
x4=0 / =140 
x5>0 / >150 
x6-x2 max                         ! objective row, max or min 
pml=1: pml=2:       !defines domains for the following constraints 
x1,-x3, x5 =0 /=100 ! the constraint can be defined for a variable list 
/                   ! End of problem definition. 

The domain specifications can be made using constants, d- and/or c-variables. 

There can be any number of domain specifications, domains need not be 

hierarchical. Either object variable or constraints may be missing. If there 

is no object variable, JLP just finds a feasible solution with 'solve'. The 

objective row can be anywhere. If the problem is solved with 'solve/m', then 

the user subroutine 'next' is used to compute actual RHS (SYS.DEP.). NOTE: 

After reading a problem paragraph, JLP computes the smallest and largest 

possible value for each row. Thus 'problem' can be used to compute the range 

of x-variables without solving the problem. 
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see also:  solve, feasible, variables 
; 

*read  ! Reads data. 

JLP reads data automatically at 'problem' command if data are not yet ready. 

Before reading data you must give xdat-,xvar-, cdat-, cvar- commands, and 

ctran- and xtran- transformations, if needed.  

see also: keepc, keepx 
; 

*recall - Prints again the last solution. 

If you have made new variables and/or you have used commands 'printlevel', 

'outlevel', 'buflevel' or 'show' then you will get more or less output than 

when you solved the problem. If option 'show/noxf' is in effect, the other 

options of 'show' are used only with 'recall'. 

see also: printl, outl, bufl, show 
; 

*reject (not cmd) - Rejecting schedules in the optimization. 

Example: 

xtran 
if unit.eq.2.and.s.eq.3 then reject ! Reject schedule 3 in unit 2. 
if herbicide>0 then reject          ! Reject schedules using herbicides. 
/ 

Rejected schedules are ignored in the optimization, they are not deleted from 

the data. Rejection of schedules is implemented with a special variable 

'reject' which gets value -1 for rejected schedules and value 0 for accepted 

schedules. If schedules are rejected for the first time during the session, 

the default is that all schedules are accepted. If schedules have been 

rejected earlier during the session, and later xtran-transformations define 

rejections, then the schedules rejected earlier remain rejected unless the new 

xtran-transformations specify the acceptance explicitly by giving value 0 for 

the variable 'reject'. Example: 

xtran 
reject=0                    ! Cancel earlier rejections. 
if biocontrol>0 then reject ! Reject schedules with biological weed control. 
/ 

It is possible define constraint that a variable needs to be always e.g. zero 

using a constraint in the problem paragraph, e.g.: 

problem 
herbicide=0 
... 

Rejection with 'reject' is computationally more efficient. 
; 

*report   ! (SYS.DEP.) Calls own general report writer. 

Calls subroutine 'repo' provided by the system manager. If option 'show/repo' 

is in effect, then report is always generated with this generator. 

see also: mrep 
; 
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*save - Saves the data in JLP format. 

Usage: save File !  If file is not given, JLP uses name:'jlpsave'. If there 

are unsaved data, then data are saved immediately. If the data are not yet 

read in or are already saved, then saving is done when reading the data or 

creating new variables. 

Options: 

save/later ! If there are unsaved data, the saving is done after the next 

transformations. This may be useful when the data exceed the memory reserved 

so that JLP knows to write the data directly into a named file instead of a 

scratch file. 

Save makes 3 files: 
file.xdj = x-data file 
file.cdj = c-data file 
file.sav = the text file containing data definitions. 

The saved data and all definitions can be read in using: 'include file.sav' 

see also: write, saveform 
; 

*saveform (not cmd) - The JLP format of saved files. 

The file file.sav contains const-,xdat-, keepx-, keepc-, dtran- and unsave- 

commands that are needed to read in data stored in JLP-format. The file 

contains also the history of the file as comments. 

The first record of file.cdj is: 

ml, nht,maxrec,nfiles,(mll(i),i=1,nfiles)  , 

where  

ml     = the total number of units 
nht    = the total number of real*4 variables in xdata 
maxrec = all records in file.xdj and file.cdj contain less than 
         maxrec numbers (4 bytes each) 
nfiles = number of xdat and cdat files used to make save-files. 
         saved files still differentiate original xdat- and cdat files 
mll(1)...mll(nfiles)= number of units in each original file 

The next records contain all saved c-variables. The first variable in each 

record is integer*4 variable telling the length of the rest of the record 

(i.e. read()n, (cmat(j), j=iprev+1,iprev+n) ). JLP packs cdata in as large 

record as the MAXREC parameter in jlp.par allows, but when reading the data no 

special structure is assumed except that variables of each unit are in order 

given by keepc-command. 

Each records of file.xdj contains first the number of xmat-numbers stored in 

the record. A record contains only complete units. JLP packs as many units as 

MAXREC allows into one record, but on input records can contain less units.  
; 

*schedules - Prints weights and shadow prices of schedules and units. 

Can be used after solving a problem. The command has the following options: 

sched        ! Print all basic schedules (schedules used in the solution). 
sched n      ! Print at most n schedules. 
sched/all    ! Print also shadow prices of nonbasic schedules. 
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sched/all n  ! Print at most n schedules (basic + nonbasic). 
sched/all>95 ! Print all schedules whose shadow price > 95% from the 
             ! value of the basic schedules of the unit 
sched/a>95 n ! Print at most n such schedules 

The system manager may put these printings under 'mrep' or 'repo' (SYS.DEP.). 
 ; 

*show - How the x-variables are printed after solving a problem. 

Usage: show(/options) (variable_list)   

Options: 

  /nox      ! Print no x-variables. 
  /noxfirst ! Print no x-variables automatically after solution,  
            ! print x-variables information only with recall command 
            ! using current show options 
            ! Significant part of the option is nonstandard: /noxf 
  /xfirst   ! Negate the /noxf option. 
  /all      ! Print for each domain all x-variables (default).  
  /prob     ! Print for each domain all x-variables used in problem 
  /notwice  ! Do not print x-variable if it is on a constraint  
              row alone (i.e. without z-variables or other x-variables, 
              and thus the value can  be seen from output for rows). 
  /twice    ! Print also duplicate information (default). 
  /cost     ! Print cost of decrease and increase for x-variables (default). 
            ! Computation of costs may take much time. 
  /nocost   ! Costs are not computed. 
  /inte     ! Print for x-variables the integer approximation obtained by 
              using in each unit the schedules with largest weight. 
  /nointe   ! Do not print the integer approximation (default). 
  /domain   ! Start paragraph that defines domains that are used when  
              computing x-variables (in addition to domains used in the  
              problem). The domains are added to the domains given 
              with earlier /domain definitions. The previous domains 
              are first cleared if /nodom is also used (i.e. /nodom/dom). 
              Domains are defined in the same way as in problem paragraph 
              (remember ':' at the end), but only one definition per 
              line is allowed. 
  /nodom    ! Do not use extra printing domains. 
  /repo     ! (SYS.DEP.) Use report generator 'repo'. 
  /norepo   ! Do not use report generator 'repo' (default). 
  /mrep     ! (SYS.DEP.) Use report generator 'mrep'. 
  /nomrep   ! Do not use report generator 'mrep' (default). 

show varlist ! print for each domain all x-variables in problem + varlist-

variables. 

New 'show' options will be in effect in the next 'solve' or 'recall' command. 

Several options can be in the same 'show' command (e.g. show/repo/mrep/pro). 

If the standard report writer is bypassed (i.e. '/repo' or '/mrep' or both are 

in effect), then other options (except '/twice') determine what quantities are 

available in user report generator. 

see also: recall, mrep, report, solve 
; 

*solve   -  Solves an LP-problem.  

Usage: 

solve    ! Solves the problem corresponding to first right-hand side. 
solve 3  ! Solves the problem corresponding to third right-hand side. 
         ! If for a constraint there are not 3 RHS's, the last one is used. 
         ! If no constraint contains 3 RHS's, return to read new commands. 
solve +1 ! Solves the problem corresponding to the next right-hand side, 
         ! useful in do-loops. 
solve +3 ! Solves the problem with RHS: previous + 3 
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options: 

solve/i  ! Initializes the vector of key schedules, useful if 
         ! you compare the solution times using different options 
solve/m(text) ! (SYS.DEP.) generate RHS with user subroutine 'next' 

After solving the problem, the solution is automatically printed with the 

current options of 'show' command (unless 'show/noxf' is in effect). The 

solution can be reprinted with 'recall'. Schedules information can be printed 

with 'sched'. 

see also: problem, show, do, recall, report, mrep, sched, feasible 
; 

*split  - Splitting a unit into parts. 

A unit can be split into parts that inherit different schedules. How units are 

split is determined in xtran-transformations with variable 'split'. 

Example: 
xtran 
if unit.eq.10.and. s.ge.3.and.s.lt.7 then split=1.25 
if unit.eq.10.and.s.ge.7 then split=2.40 
oldunit=unit   ! Old unit numbers can be saved this way. 
olds=s         ! Old schedule numbers can be saved this way. 
/ 

Now schedules 3-6 are put to part 1 that is 25% of the original unit. 

Schedules 7- are put to part 2 that is 40% of the original unit. The 

unspecified schedules 1 and 2 remain in the original unit (part=0), and their 

share is 100-25-40%= 35%. It is required that the variable 'split' gets 

consecutive values 1,2,.., and that not all schedules are put to these parts 

so that some schedules are left to the original unit (part=0).  The default is 

that all x-variables stored in xmat matrix are multiplied with the 

corresponding share proportion. If only part of x-variables should be split 

among parts (e.g. a x-variable like 'harvestmethod' should remain unchanged), 

then the variables that should be multiplied with the share can be determined 

with command: 

split variable_list 

Alternatively, the variables that are NOT multiplied with the share  can be 

given with command: 

split/no variable_list 

see also: xtran, duplicate 
; 

*system  (SYS.DEP.) - Sends a command to system level. 

Usage: system command ! Executes the one-line FORTRAN statement given in JMAKE 

option $SYSTEM in file jlp.par. The example given in jlp.par can be used to 

send command to the system level in VAX-VMS (e.g.: 'syst dir' will print the 

current VAX directory). 
 ; 

*time  (SYS.DEP.) Measures time. 
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If $SECNDS option in jlp.par is in effect, 'time' prints the time from the 

first time-command and from the previous time-command. If $CPU option in 

jlp.par is also in effect, the cpu- time is also printed. The time for solving 

a problem and doing the after-solution computations is automatically printed. 
; 

*title -  Defines title used when printing results. 

Usage: title text 

Note that you can get text into output file by entering comments. 

User report writer can use the title for any purpose (SYS.DEP.). 
; 

*transformations (not cmd) 

The syntax of transformations is basically the standard FORTRAN syntax. 

For instance: 

x5=sin(x2**2+sqrt(ln(x4-2))) 
if x3+x2=4 .or. sin(x3)>0.5 then    ! parentheses are not necessary 
x7=x5-7 
else  
x4=x3**2.2+tan(x5) 
end if                              ! if ... then can not be nested 

Arithmetic operations and functions: 

"    = raise to integer power (-1)"2=1 | **   = raise to real power     

abs  = absolute value                  | atan = arctan        

cos  = cosine of radians               | cosd = cosine of degrees 

exp  = exp                             | int  = integer part 

log  = natural logarithm               | log10   = log base 10   

mod(x1,x2) = remainder mod x2          | ran(x1)= random with seed x1   

sin  = sinus (angle in radians)        | sind = sinus, angle in degrees 

sqrt = square root                     | tan  = tangent, angle in rad     

tanh = tanh                            | x1=swap(x2) = change x1 and x2 

max(x1,x2,x4)= maximum                 | min(x1,2,x4)=  minimum  

Logical functions: 

.gt. .lt. .ge. .le. .eq. .ne. .and. .or. .not. 

 >     <   >=   <=   =          & 

Current 'own' functions: 

npv(interest_percent,income1,time1,...,incomen,timen) = net present value    

see manual for %-loops and special uses of 'then' and 'else' 
; 

*unsave  - Gets data from saved JLP files (not generally needed). 

Usage: unsave cdat xdat  

If JLP has saved data in JLP format at 'save' command, then JLP automatically 

creates the correct 'unsave' command into the '.sav'-file. 

User is not expected to give this command explicitly, implicitly this command 

is implied by: 'include file.sav'. 
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see also: save, path 
; 

*values - Prints current values of variables. 

Usage: values variable_list 

Variable_list may contain d-, c- and x-variables and constants. For d-, c- and 

x-variables the value is for the last xdat-file, for the last unit, and for 

the last schedule, respectively. This command can be used to see the current 

values of constants, or to print the results if transformations are used to 

compute summary information over files, units, or schedules. 

see also: constant, dtran, ctran, xtran 
; 

*variables (not cmd) - Description of data variables. 

Data variables are constants, d-variables, c-variables or x-variables. 

Constants, d-, c-, and x-variables differ in the way how they get their values 

and how they can be used. Constants are given values by 'constant' command or 

are created by xdat-command (e.g. 'xdat south.xda, north.xda' creates 

constants 'south' and 'north' with values 1 and 2). D-variables get new values 

when the data file changes. A d-variable 'data' gets automatically the number 

of the data file, and other d-variables are defined by 'dtran'-

transformations. C-variables (class variables) are read or made by 'ctran'-

transformations for each calculation unit, and x-variables are read or made by 

'xtran'-transformations for each treatment schedule. When data are read in or 

when making transformations, all variables are put in the same vector so that 

transformations can access variables from different levels. You should not use 

the same names for constants,  d-,  c- and x-variables. JLP does not check 

this. Constants, d-variables and c-variables can be used to define domains for 

constraints or domains for printed results (see 'show/dom'). Constants and d-

variables can be used as parameters in 'ctran'-, and 'xtran'-transformations, 

and c-variables can be used as parameters in 'xtran'-transformations. C-

variables need to include variable with name 'ns' which tells the number of 

treatment schedules for each unit. Variable names must start with a letter A-Z 

or a-z (not with 'ÄÅÖäöå') and cannot contain characters '!"=*/:%-' (allowed 

characters include e.g. '#' and '.'). A list of variables is formed by 

separating variable names with commas. A list (sublist) of several variables 

with consecutive variable names can given with a ',-' construction: 

var1,-var125,costa,-costx 

The predefined variables are: 

data      = the number of data file to be read in (d-variable) 

unit      = the number of calculation unit (c-variable) 
ns        = number of schedules in unit  (c-variable)  
s         = the number of the schedule (x-variable) 
duplicate = x-variable used to duplicate schedules (see: duplicate) 
split     = x-variable used to split units into part (see: split) 
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reject    = x-variable having value -1 for rejected schedules (0 otherwise) 

see also: cdat, cvar, ctran, xdat, xvar, dtran, constant 
; 

*write - Writes the current xmat and cmat-matrices. 

Usage:   

write file          ! Writes xmat to binary file file.xdb and cmat to  
                      binary file file.cdb 
write/*  file       ! Write xmat to file file.xda and cmat to file  
                      file.cda with free format 
write/(8f8.0) file  ! writes xmat and cmat to files file.xda and file.cda  
                      using FORTRAN format 

Stored c-variables of one unit are written with one write-statement (i.e. into 

one record unless implied otherwise by the format), and stored x-variables of 

each schedule are written with one write statement. Names of written variables 

are printed (to terminal/outfile/buffer). 

The current data can be saved also with this 'write' command, but the user 

needs to give the proper commands for reading the data again (compare with 

'save') 

see also: values, save 
; 

*xdata - Gives the names of x-data files. 

Usage: xdata file1,...,filen  

It is recommended that names of text  files  end with '.xda',  names of binary 

files end with '.xdb'. Files saved in JLP format end with '.xdj'. Directory 

specification given by 'path' command is automatically added to the name. 

Constants with names file1,...,filen (exluding extension) are created and 

given values 1,...,n. JLP keeps track of original file structure with variable 

'data'. Thus transformations may contain 'if data=file1 then' statements and 

domain specifications contain 'data=file1' parts. 

If xform = 'm', then the user subroutines may interpret names file1,... 

without a connection to physical files (SYS.DEP.).  

also: xform, xvar, cdata, save, cvar, path 
; 

*xform  - Defines the format for reading xdat files. 

Usage: xform form ! where  

form =  *    if xdat files can be read with FORTRAN '*' format 
        b    if x-data are in binary files 
    (8f10.0) any FORTRAN format 
        m    data are read with user subroutines: 
             minit, mgetc, mgetx, mfinit  (SYS.DEP.) 

All variables given in 'xvar' are read with one FORTRAN read statement. 

see also: cform, write 
; 

*xtran -  Defines transformations made for x-variables. 

Xtran-transformations  are made in order to get variables that can be used in 

problem definitions. For each schedule, the values of constants, d-, and c-
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variables can be used. The default is that all output variables are stored 

(except 'split' and 'duplicate'). If not all output variables should be 

stored, then variables stored when data are read in are given in 'keepx' 

command, and output variables to be stored in later transformations should be 

given in 'make' command. Xtran- transformations are computed into the xmat- 

matrix, and they cannot be cancelled.   

Examples: 

xtran 
cost=harvestcost*harvestvolume 
/ 

If linear transformations are needed in LP-problems, they can be specified 

either in xtran transformation or written explicitly in problem paragraph. 

E.g. the following two problems are equivalent: 
1) 
  xtran 
  diff.1=income.2-income.1 
  / 
  prob 
  diff.1>0 
  ... 
  / 

2) 
  prob 
  income.2-income.1>0 
  ... 
  / 

If same linear transformations are used in several problems, it is more 

efficient to do them just once in xtran transformations. On the other hand, if 

linear transformations are written explicitly in 'problem' paragraph, JLP can 

compute the shadow prices of the element x-variables ('income.2' and 

'income.1' in the above example).  

Xtran-transformations are used for splitting a unit into parts (see 'split'), 

and for rejecting schedules in optimization (see 'reject'). 

see also: transform, keepx, ctran, make, split, duplicate, problem 
; 

*xvar  - Defines x-variables to be read in. 

Usage: xvar variable_list 

The default is that all xvar-variables are stored. If only a subset needs to 

be stored, the stored variables are given with 'keepx' command. 

Example: 

xvar income.1,-income.6,volume.1,-volume.6 

If variable with name 'reject' is among xvar-variables, it is interpreted to 

indicate schedules that are rejected. Value -1 means that the schedule is 

rejected and value 0 that it is not rejected. The values of 'reject' can later 

be changed with xtran transformations. 

see also: keepx, cvar, variables, xtran, reject 
; 
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** end of file jlp.hlp *** 
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4. SETTING UP THE WORKING ENVIRONMENT 

This part describes how the system manager (called here 'user') can build an executable 
program from the source files provided and install JLP into a larger management 
planning system. 

4.1 Building JLP  

4.1.1 Compiling and linking JLP (file readme.jlp) 

File readme.jlp contains information what files are included, and how to set up the 
working environment using JMAKE precompiler. File readme.jlp will be updated to 
correspond changes made after the printing of this manual. Current content of 
readme.jlp: 
 

********************** File readme.jlp:  
This file includes general information about: 
 
A. Files included in the JLP-package 
 
and how to: 
 
B. Compile and link JMAKE 
C. Make own interface subroutines 
D. Modify file jlp.par 
E. Run JMAKE 
F. Compile and link JLP 
G. Test JLP 
and 
H. Revisions of JLP after June 1, 1992. 
 
A. Files included in the JLP-package 
==================================== 
 
The following files are included in JLP-package (on DOS or Macintosh 
diskettes, file names are always in lower case): 
 
1: readme.jlp  - this file 
 
2: jmake.f     - source for the JMAKE precompiler 
 
3: jlp.par     - file containing system options and data parameters  
 
4: jlp.hlp     - help file for on-line help and reference  
 
          JLP source files 
 
5: jlp.src     - file containing main program and interface subroutine 
6: jlp2.src    - subroutines accessing common data areas 
7: jlpsub.src  - general subroutines 
8: jlpopt.src  - optimization subroutines 
9: jlpint.src  - templates for interface subroutines 
 
          Test files: 
 
10: test.in    - commands for a test run, use:"include test.in" 
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11: test.xda   - x-data for test 
12: test.cda   - c-data for test 
13: test.out   - output from the test run  
 
B. Compiling and linking JMAKE 
============================== 
 
1) Edit in the first program line of the file jmake.f the values of parameters 
n5 and n6 according to the system defaults: 
 
* n5= unit for terminal input 
* n6= unit for terminal output   
      parameter (n5=5,n6=6) 
 
2) Change the extension ".f" of the file jmake.f if it is more convenient in 
your system. 
 
3) Compile jmake.f 
 
4) Link jmake 
 
C. Make your own interface subroutines 
===================================== 
 
File jlpint.src contains templates for interface subroutines. If user specific 
interface subroutines are needed, then the user should make own versions of 
the subroutines into a different file. 
 
D. Modify file jlp.par 
====================== 
 
Edit the file jlp.par, and save it with a different name if you want to keep 
original jlp.par unchanged. The file jlp.par contains information about the 
system specific features and size parameters for declaring variables and 
vectors of JLP. File jlp.par contains three types of parameters. Parameter 
lines starting with "$$" give general information for the JMAKE precompiler. 
Lines starting with "$" tell how certain system dependent features can be 
included in the programs. Other noncomment lines (lines starting with "*" are 
comments) are parameters for defining FORTRAN parameters, variables and 
vectors.  
 
E. Run JMAKE 
============ 
 
Run then program JMAKE that creates final source files (with file name 
extension given with parameter "$$EXT"in jlp.par). If the default directory 
already contains a file with the corresponding name, JMAKE asks if the file 
should be replaced. If answer "Y" is given, then JMAKE tries to write the new 
final source file, and an error occurs in some systems (e.g. OS/2), or the old 
file is just replaced (e.g. in Macintosh), or the new file will be the newest 
version of the file (e.g. in VAX/VMS). 
 
JMAKE creates files (assuming that $EXT -parameter in file jlp.par is F): 
jlp.f 
jlp2.f 
jlpsub.f 
jlpopt.f 
jlpint.f  - if not removed from $FILES statement in jlp.par. 
+ other files specified in $FILES statement in jlp.par.  
 
F. Compile and link JLP 
======================= 
 
Compile program files created by JMAKE and other files not precompiled with 
JMAKE. 
 
Link. If you have written your own main program, that file must linked before 
the object file resulting from jlp.src. The interface subroutines replacing 
templates in jlpint.src must be linked before jlpint. 
If parameters in file jlp.par are changed, run JMAKE again. It is safest to 
let JMAKE precompile all files again, even if not all files are generally 
affected by changes of parameters in jlp.par. 
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G. Test JLP 
=========== 
 
Copy JLP program and test files in the same directory. Run JLP for a test 
problem: give as first JLP-command: 
 
incl test.in/*:* 
 
The output should look similar to to contents of file test.out. 
 
 
H. Revisions of JLP after printing of the manual 
================================================ 
 
This section will tell what changes are made in JLP package after printing of 
the manual. 
 
******** end of file readme.jlp 
 

4.1.2 Parameter file jlp.par 

The programs are written trying to follow the FORTRAN-77 standard. Some common 
nonstandard features are useful. Options of the JMAKE precompiler determine if 
nonstandard features are included, and what is the syntax of the nonstandard features.  
All system specific features and editable size parameters for declaring variables and 
vectors of JLP are transmitted in file jlp.par.  

Current contents of jlp.par as used in Language Systems FORTRAN 3.0 running in 
Macintosh Quadra 700: 

******   file jlp.par 
**** user can edit only the right-hand sides of the parameters 
* 
* Precomiler parameters 
* ===================== 
* 
$$EXT = .f          ! File name extension for source files, e.g. 
*                     ".f",".for" or ".ftn". 
$$! = T             ! Compiler interprets text after '!' as a comment. 
*                     This parameter has effect only in lines 
*                     generated by JMAKE. 
$$DOUBLE = DOUBLE PRECISION  
*                     Data type used in calculations, e.g. REAL*10.  
*                     Precision less than real*8 is not recommended. 
$$SOLTYPE = DOUBLE PRECISION !      
*                     Data type for accessing the results.   
$$DEFINITIONS=jlp2.src  
*                   ! Files containing global definitions,  
*                     user can/must change the first file only if  
*                     JMAKE is used to precompile other programs. If own 
*                     files included, separate with commas, e.g: 
*                     $$DEFINITIONS=jlp2.src,owndef.src 
*                     The definitions can be at the beginning of ordinary 
*                     source file (as jlp2.src is) that is also precompiled  
*                     with JMAKE. 
$$FILES = jlpint.src  
*                     User source files that use global JLP variables or 
*                     variables defined in user  
*                     or JMAKE filtering options. Initially file jlpint.src is 
*                     included here. If user subroutines replace all the 
*                     subroutine templates there, remove jlpint.src. 
*                     If several files separate with commas,e.g: 
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*                     $$FILES =  FILE1.SRC,FILE2.SRC  
*                     If all files do not fit to one line,  
*                     give several $$FILES -lines. 
*                     If there are no files put '*' as first character:  
*                     *$$FILES (possible if JMAKE is used for other programs) 
* 
* 
* Options 
* ======== 
* 
* Option is in effect:             $OPTION = T  
* Some options require additional information.  
* In that case the syntax is:      $OPTION = T = TEXT 
* Option is not in effect:         $OPTION = F (= TEXT)  
* 
*options in JLP: 
* 
$READONLY = T = READONLY  
*                   ! Keyword in OPEN statement used by JLP to open 
*                     files for reading. In multiuser systems, a user  
*                     with reading rights can acces files in other users' 
*                     directories (e.g. in VMS this allows also a shared 
*                     acces). It is always safer to open files with this 
*                     option, as it prevents accidental modifications 
*                     of files. This keyword is nonstandard Fortran. 
*                     In IBM Fortran/2 this option would be 
*                     ACTION=READ. 
*                         
$LIST =  T = LIST   ! If this option is in effect, JLP opens output 
*                     text files with the nonstandard keyword 
*                     CARRIAGECONTROL='(text)' 
*                     In some systems one may have trouble with the  
*                     carriage control characters of standard Fortran  
*                     text files (e.g. a program may  read in characters 
*                     you don't see in the editor or printing). 
* 
$SUPPRESS = T = $   ! Format that suppresses carriage return in output. 
*                     This is used to print prompts (e.g. 'jlp>') that  
*                     indicate that JLP waits for input.  
*                     In IBM Fortran/2 this format is: \  
*                        
$VERSIONS = T       ! Different systems work differently when a program 
*                     tries to create a new file with name of an existing 
*                     file (e.g. VMS creates new version of the file, 
*                     some systems just delete the old file, and in 
*                     some systems an error occurs). If this option is 
*                     in effect JLP creates version numbers when creating 
*                     new files. For instance if JLP should open a new 
*                     file with name "output.jlp" and a file with 
*                     that name exists, JLP opens the file with name 
*                     "output_2.jlp". Parameter MAXVER given below 
*                     determines the maximum number of versions. 
* 
$SYSTEM = F =  call lib$spawn(inp(ial:lop)) 
*                    This option (if in effect) tells what JLP should 
*                    do at JLP command 'system'. Character variable 
*                    inp contains the command line, ial is the first 
*                    nonblank position after 'system ', and lop is 
*                    the last nonblank character of the command line. 
*                    In VMS 'call lib$spawn(inp(ial:lop))' sends the 
*                    command line after 'system ' to the system level 
*                    (e.g. JLP command 'system dir' then prints the 
*                    names of files in the current directory) 
* 
$OLDMFORM = F      ! Old versions of subroutines for reading data are  
*                    included. These subroutines are used  used when 
*                     'xform m' is given as the format.  
*                    See the manual for more details. 
* 
$MREP = F          ! Own report generator subroutine MREP included.  
*                    Invoked by jlp-command 'mrep'. See the manual. 
* 
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$SECNDS=T= SECNDS(0.)  
*                   Timing function available in the system. The function 
*                   should return the elapsed time measured 
*                   from any fixed point in any units. 
* 
$CPU =F =         ! Timing function  measuring time used by cpu. 
* 
                  
$INIT1=F=         ! First JLP command executed when JLP starts. 
*                   For instance, if data files are always in  
*                   directory disk1:[data], this could be 
*                   $INIT1=T= path disk1:[data] 
*           
$INIT2=F=         ! Second command executed when JLP starts. If 
*                   more than two initialization commands are needed, 
*                   the commands can be stored in a file, and 
*                   included with INIT1 option, e.g.: 
*                   $INIT1 =T = include init.in 
$OWN1=T=own1      ! Command for calling user subroutine own1(inp,errors). 
*                   File jlpint.src contains a template and more information. 
$OWN2=T=own2      ! Command for calling user subroutine own2(inp,errors). 
*                   File jlpint.src contains a template and more information. 
* 
$DUMP=F           ! This option is used for printing information 
*                   for tracing errors in the optimization algorithm. 
*                   Ordinary user should have this option always off. 
* 
* Parameters: 
* =========== 
* 
*  If e.g. parameter MAXNX is too small, JLP gives an error message: 
*  "*PAR* increase MAXNX" 
* 
N5 = 5       ! Unit for terminal input. 
N6 = 6       ! Unit for terminal output. 
* 
MAXXMA=900000 !Size of the vector used for xdata. 
*              If xdata exceed the memory reserved, JLP is slower. 
*              So put MAXXMA as large as possible. 
MAXCMA=2000  ! Size of the vector used to store c-data,  
*              at least (number of units) * (number of c-variables) 
* 
MAXREC=8191  ! Maximum number of real*4 variables in one record 
*              of an unformatted file. MAXREC has effect only if  
*              parameter MAXXMA is so small that the whole data  
*              can not be stored in memory, or when the data 
*              is saved in JLP format using 'save' command. 
*              Optimal value is dependent how the speed of  
*              reading depends on the record size.If data does 
*              not always fit to memory, MAXREC should be 
*              at most 1/3 of MAXXMA, but probably e.g. 1/20  
*              of MAXXMA is better. MAXREC should be at least so large 
*              that one record can hold the x-data for any 
*              calculation unit 
*            
MAXNX=100    ! Max. number of x-variables 
MAXXS=300    ! Max. number of x-variables computed and printed after 'solve'. 
*              If the integer solution is not printed, then this should be 
*              (number of domains) x (number of x-variables printed). If the 
*              integer solution is printed, then this should be twice as much. 
MAXXDX=1700  ! If cost of decrease and increse computed,  
*              this should be at least:  
*       (# of domains) x (# of x-variables printed) x (# of basic x-variables) 
MAXNR=40     ! Max. number of rows in a problem (area constraints 
*              are not counted) 
MAXNXP=60    ! Max number of x-variables in a problem definition, 
*              rows including a single x-variable without 
*              a coefficient are not counted.  
MAXML=1000   ! Max. number of calculation units. 
MAXMV=200    ! Max. number of shcedules in one unit 
MAXSPL=20    ! Max number of parts in a unit when a unit is split 
MAXSPT=100   ! Max. total number of parts in all split units  
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MAXCOM=30    ! Max. number of domain combinations 
MAXDOM=30    ! Max. number of domains 
MAXNC1=30    ! Max. number of c-variables 
MAXNZ=50     ! Max number of z-variables 
MAXDAF=30    ! Max number of data files used in xdat -  command 
MAXVER=3     ! Max. number of file versions if $VERSIONS = T 
* 
* unit numbers used by jlp files (change if these conflict with 
* unit numbers used in own subroutines): 
* 
NUSAVX = 33  ! Unit for saving data 
NUSAV2 = 34  ! Unit for rewriting save file 
NU1    = 35  ! Unit for several JLP files 
NU2    = 36  !    " 
NUOUT  = 37  ! Unit for additional output 
* 
* units for included files: 
NF1 = 41 
NF2 = 42 
NF3 = 43 
NF4 = 44 
NF5 = 45 
NF6 = 46 
* 
* units the user can use in own interface routines e.g.   
* for reading data and report writer: 
NUOWN1=51 
NUOWN2=52 
* 
LCOMLI=600  ! Max  length of the command (including continuation lines) 
LLINE=130   ! Max. length of a command  record 
LPROBL=200  ! Max length of command line in problem-paragraph 
* 
**text buffers 
* 
LENINC =1640  ! Length of the input buffer 'INC' 
LININC = 100  ! Max. number of lines of the input buffer 
* 
LENOUT =2640  ! Length of the output buffer 'OUT' 
LINOUT = 100  ! Max. number of lines of the output buffer 
* 
LENDTR = 800  ! Length of buffer 'DTR' for d-transformations  
LINDTR =  50  ! Max number of lines in the buffer for d-transformations 
* 
LENLOO = 400  ! Length of the buffer 'LOO' storing DO-loops 
LINLOO =  60  ! Max. number of lines in the buffer 
* 
LENCON = 160  ! Length of buffer 'CON' for constant definitions 
LINCON =  10  ! Max. number of lines in the buffer 
* 
LENPRO =1024  ! Buffer 'PRO' for constraint definitions (without rhs) 
*               Max. number of lines = MAXNR 
* 
LENSDO=400    ! Buffer 'SDO' for storing show/domain definitions 
LINSDO=40     ! Max. number of lines. 
**end of text buffers 
* 
LVARNA=32   ! Length of character variables used for variable names 
LFORM =130  ! Max. length of formats xform and cform 
LFILNA=50   ! Max. length of file names 
LDOMNA=40   ! Max. length of domain specifications 
LPATHN=40   ! Length of character variables used for PATH  
NDTRAN=300  ! Length of compiled d-transformations 
NCTRAN=300  ! Length of compiled c-transformations 
NXTRAN=300  ! Length of compiled x-transformations 
NDUTRA=300  ! Length of compliled dupl-transformations 
NSDTRA=200  ! Length of transformations defining show/domains 
NINT  =50   ! Max. number of intermediate results in transformations 
NPARA =100  ! Max. number of constants in transformations 
NIDOUT=100  ! Max. number of output variables in d-transformations 
NICOUT=100  ! Max. number of output variables in c-transformations 
NIXOUT=100  ! Max. number of output variables in x-transformations 
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MAXRHS=5    ! Max. number of rhs's in problem-command, 
*       note that  your own NEXT subroutine may generate more rhs's 
LEVELP=3    ! Default value for printlevel 
LEVELO=1    ! Default value for outlevel 
* 
* Own parameters can be added here. For instance, if you need 
* additional unit numbers, it is a good idea to determine them  
* here so it is easier to prevent conflicting numbers. See manual for  
* how to use JMAKE in own subroutines. An example: integer 
* parameters NUOWN3, NSIZ a real parameter DELTA, a double precision 
* parameter DDELTA and character parameter TEXT can be defined by 
* deleting '*' in the following lines: 
*NUOWN3 = 77 
*NSIZ   = 123 
*DELTA  = 1.3 ! JMAKE assumes the first character convention of Fortran 
*DDELTA = 1.2D0 ! Double precision parameters should include '.' and 'D'.  
*TEXT   = 'Help, Help'  
** JMAKE will generate the corresponding parameter statements, 
**  if the program contains a section: 
*needs: 
*NUOWN3,NSIZ,DELTA 
*DDELTA,TEXT 
*end: 
** end of file jlp.par 

4.1.3 Features of standard FORTRAN not used 

Some FORTRAN compilers do not implement all standard features. And some 
companies seem to interpret the standard differently. In order to avoid difficulties with 
less general compilers, the following features were not used: 

– character and numeric data in the same common area 
– alternative entry points in subroutines 
– alternative return addresses 
– same character variable on both sides of an assignment statement 

4.2 Output Files in non-VMS Environment 

New files are opened by save, outfile and write commands. Operating systems 
work in different ways when a program tries to open a new file with a name of an 
existing file. The VMS operating system just creates a new file with a new version 
number. In the UNIX operating system an error occurs. Using LS- FORTRAN in 
Macintosh  the new file replaces (and thus deletes) the old file. If option $VERSIONS is 
set to T in file jlp.par, then JLP appends version '_n' to the file name (before file name 
extension) if there is a file with the given name. The version number will be one higher 
than the highest existing version. The first version does not have a version number. If 
the version number would be higher than MAXVER parameter given in jlp.par, then an 
error occurs. 

For input files defined by cdat, xdat or unsave commands, JLP expects to get the full 
file names, i.e. JLP does not try to figure out what version might be in question. If data 
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are stored in the internal format using save command, then the unsave command is 
written into the '.sav' file with the correct version numbers.  

4.3 Sending a Command to the System Level 

While using JLP interactively, the user may need to interrupt the JLP session to do 
something at the system level (e.g. copy files). In a modern windows based operating 
system (e.g. in Macintosh), the system level can be accessed easily. If you are using a 
simple VAX-VMS terminal, you can set the following JMAKE option to T: 

$SYSTEM = F =  call lib$spawn(inp(ial:lop)) 

Thereafter system command can be used to send the command line to the operating 
system: 
 
system dir         ! get directory 
syst edit file.in  ! edit file 'file.in' 

In operating systems other than VMS, you may replace the call to lib$spawn with a 
call to another system routine. The argument 'inp(ial:lop)' contains the command 
line after the system command. 

4.4 Creating Own Timing Subroutine 

 In the version of jlp.par  listed above it is assumed that the function SECNDS provided 
both by VAX FORTRAN and Language Systems FORTRAN is used for timing.  If the 
system does not support SECNDS then you may make your own timing subroutine into 
a source file linked with JLP. For instance, in IBM FORTRAN/2, an corresponding 
timing function might be: 
 
 
      function secs() 
      integer*2 hh,mm,ss,hd 
      call gettim(hh,mm,ss,hd) 
      is=hh*3600+mm*60+ss 
      secs=is+hd/100. 
      return 
      end 

To use this function, change $SECNDS option into: 

$SECNDS=T= SECS() 

Elapsed time can be measured in JLP using time command. The time used in the 
optimization phase is also measured automatically. If $CPU option is in effect (and 
corresponding function provided), also elapsed cpu-time is measured.  
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4.5 Management of Programs with JMAKE Precompiler 

JMAKE is a general purpose precompiler used to manage global parameters, global 
variables (stored in common areas), lengths of character variables and system 
dependent options. 

JMAKE is case sensitive. 

4.5.1 Accessing JLP global parameters and variables 

JLP is designed so that all JLP subroutines and subroutines written by the user can 
access all global variables and parameters of JLP (henceforth term 'variable' is used to 
refer to both variables and parameters). Because the standard FORTRAN does not 
recognize global variables, JMAKE precompiler was made to manage global variables 
in a transparent way.  JMAKE generates necessary definitions of variables and common 
areas for all variables that the subroutine needs.  

Editable parameters are given in file jlp.par, and other global variables are in the file 
given in $$DEFINITIONS statement in jlp.par (currently in file jlp2.src). JMAKE 
precompiles all files given in $$FILES statement in jlp.par and all files listed in $FILES 
section in files given in $$DEFINITIONS statement in jlp.par (with this a little 
complicated system JMAKE can hide definitions that the user is not allowed to change).  
JMAKE generates definitions for global variables listed in 'needs:' sections of  the file.  A 
'needs:' section looks like: 
 
*needs: 
*KEEPCL,KEEPXL,LISTXS,TITLE,LIST,VNAME 
*BATCH,INPUT,LEVEL,LEVEL2,LEVEL3,NOUT,NOUT2 
*BMAT 
*end: 

It is possible to edit the output file of JMAKE and make it the new input file of JMAKE 
by changing the file name extension into '.src'. In order to avoid confusion with file 
names, this is not recommended except in case when corrections are accidentally made 
to '.f' file.   

 pThe user should define all variables in subroutines using JLP global variables, so that the 
compiler will print an error message if the user is trying to define a local variable 
having the same name as a JLP global variable. Note that in order to make proper 
definitions of common areas, JMAKE generates also variables not included in the 
'needs:' section. The user can not rely that these additional definitions generated will 
remain the same in future versions of JLP. 
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4.5.2 Using JMAKE to manage own data structures 

When writing own subroutines linked with JLP, the user may need to define own 
global parameters and variables. It is recommended that the user will manage his/her 
own global parameters and variables with JMAKE precompiler.  

Parameters can be defined either by adding parameters directly into jlp.par or  defining 
them in the same way as variables (see below). Here jlp.par  refers to the parameter file 
of JMAKE (recall that the parameters can be in any file).  Own variables can be defined 
as follows: 

 1) Add to $$DEFINITIONS statement in jlp.par the name of the file that contains the 
JMAKE definitions (that file can be ordinary source file as jlp2.src is). 

2) Define the parameters, variables and common areas at the beginning of the file (later 
called definitions section)  given in $$DEFINITIONS statement. 

All lines in definitions section start with '*'. A comment line starts with '**'.  Character '!' 
starts an end-of-line comment. 

A definitions section must first contain $FILES subsection that looks like: 
 
*$FILES ! files to be precompiled 
*jlpsub.src 
*jlpopt.src 
*jlp2.src 
*jlp.src 
*$END 

If no files are specified here (recall that these files can be given also in $FILES section 
of jlp.par ) , this section contains only  *$FILES and *$END lines. Then the definitions 
section may contain a parameter section like: 
 
*::PARAMETER 
*MAXOPN =7        ! Max. number of simultaneous open include files 
**                  comment 
*MAXNC=MAXD+8     ! MAXD must be defined earlier in jlp.par 
*MAXNV=MAXNC+4    ! total number of variables 
*LCHAR=1300       ! parameter used later to specify the length of character 
**                  variable 
*RPAR=1.58        ! real parameters can also be given 
*DPAR=1.67D0      ! double precision parameters must contain both '.' and 'D' 
*TXT = 'Message'  ! Character parameters are also allowed 
 

pParameters can be equally well given in jlp.par as in '*::PARAMETER' section in 
definitions file. 
 

Thereafter definitions can contain sections as: 
 
*::VTYPE       ! VTYPE can be any variable type recognized by the compiler 
*CFC           ! Variable doing something useful 
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**AML          ! comment 
*MV(-2:MAXNC)  ! MAXNC needs to be a parameter defined earlier 

If e.g. variable MV is needed in somewhere (it is in 'needs:' list or it is required to build a 
common area properly), JMAKE generates: 
 
      PARAMETER (MAXD=100)       ! this comes from jlp.par 
      PARAMETER (MAXNC=MAXD+8)   ! from *::PARAMETER section 
      VTYPE    MV(-2:MAXNC)      ! MAXNC needs to be a parameter defined       

Thus if a variable is needed, JMAKE generates automatically all the parameters needed. 

If jlp.par contains a JMAKE $$-parameter like: 
 
$$VTYPE= CTYPE*8    ! CTYPE*8 is a variable type known to the compiler 

then JMAKE replaces the type VTYPE with type CTYPE*8: 
      
     CTYPE*8    MV(-2:MAXNC)      ! MAXNC needs to be a parameter defined       

There are no assumptions for variable types used in definitions section, thus all types 
accepted by the compiler can be used. 

A special treatment is given for '*::CHARACTER'  section which may look like: 
 
*::CHARACTER 
*100 VNAME(MAXD) 
*LCHAR APUNIM         ! LCHAR is a parameter defined earlier 

If VNAME and APUNIM are needed, JMAKE will generate 

      PARAMETER        (MAXD=100)      
      CHARACTER*100    VNAME(MAXD) 
      CHARACTER*1300   APUNIM 

Note that statement  

      PARAMETER        (LCHAR=1300) 

will be generated only if it is needed for other purposes in addition to specifying the 
length of APUNIM. A parameter determining the length of a character variable must be 
given literally, i.e. , definition 
*LCHAR=LC1+LC2 

is not allowed.  

Common areas are defined in *::COMMON subsection as follows 
*::COMMON 
*JLPDAT ML,MV,NSTICLA,> 
* IFREE,LMEM,ILINK1,LOCREJ,IXAP 
*JLPXMA XMAT,CMAT 
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The first name is the name of the common area.  Character '>' at the end of line 
indicates that the items in the next line belong to the same common area. If a variable in 
a common are is needed, then JMAKE will generate definitions for all the variables and 
the definition for the common area. JMAKE splits the lines in the definition of the 
common in the same way as splitted in the *::COMMON subsection, so the line can not 
be too long (JMAKE gives an error message if line is too long). JMAKE also generates 
SAVE statement for each common it creates, so commons created by JMAKE are static 
also in systems where default is that commons are dynamic.  

There can be several definitions for the same common area. JMAKE will  generate the 
definition containing variables needed in the subroutine (of course variables given in 
different definitions can not be used in the same subroutine). This way different 
subroutines can share the same working areas.  JLP uses a common JLPWRK this way. 
The user can also use this common in report writer but not in subroutines used in 
transformations and reading the data into the program.  

JMAKE can be used to generate also definitions for local variables. Variables will 
automatically be local if they are not contained in any common.   

The definitions section ends with: 
*::END 

4.5.3 Using  JMAKE precompiler options 

If the user is making programs that should be used in different operating systems, then 
the precompiler options of JMAKE might be useful. Assume that jlp.par  contains e.g. 
option: 
$MREP = F    ! option is not in effect 

   or 
$MREP = T    ! option is in effect 

 Then a program may contain section 
*IF MREP  
         call ownsub(par1,par2) 
         write(n6,*)'kukuu' 
*END 

   or section 
*IF MREP  
         call ownsub(par1,par2) 
*ELSE 
         write(n6,*)'kukuu' 
*END 

    or section 
*IF NOT MREP  
         call ownsub(par1,par2) 
*END 
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JMAKE will then comment out the lines according to the value (T/F) of option $MREP. 
No ordinary comment starting with '*' is allowed in '*IF ... *END' section. 
Options can be associated with a text string that can be used to transmit system 
dependent features into the code. For instance, assume that jlp.par contains:  
$SECNDS=T= SECNDS(0.) 

Then  the program may contain: 
*IF SECNDS REPLACE ?? 
       TIME=?? 
*ELSE 
       TIME=0 
*END 

String defining what must be replaced if option is in effect can be anything (or contain 
even spaces). This is useful if JMAKE is used to precompile the output file of JMAKE 
where the original string (e.g. '??') has been replaced with e.g. 'double precision'. 

4.5.4 Using JMAKE in other programs 

JMAKE does not contain JLP specific assumptions. Thus it can be used in any program. 
The following changes are needed if JMAKE is used in other programs : 

1) Change the default name of the parameter file determined in file jmake.f (this is not 
necessary as JMAKE asks if the default parameter file should be replaced with some 
other file). 

2) Make the corresponding parameter file. At least $$FILES and $$DEFINITIONS 
statements must be different from jlp.par. 

3) Make a definitions section to each file listed in $$DEFINITIONS statement in the 
parameter file. 

4) Make 'needs:' section to each subroutine where global parameters or variables 
are needed. 

5) If compiling options are needed, make corresponding '*IF option ... *END' 
sections. 

4.6 Using JLP Data Structures and Subroutines 

This section describes some general properties of those JLP data structures and 
subroutines that the user may need in writing own interface, data input and report 
generator subroutines. All variables and parameters mentioned can be accessed using 
'needs:' construction of JMAKE. 
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4.6.1 Listing headers of subroutines with JLP  

The purpose of this chapter is to introduce some possibilities how the user can add 
extra properties to JLP. More detailed (and updated) information is found in source 
files. JLP can be used to extract the summary headers of subroutines from the source 
files. Each subroutine has a short header (containing the subroutine or function 
statement and the purpose of the subroutine), and a longer header containing more 
information. Both headers starts with '*='. A short header ends with '**' and a long 
header ends with '***'. The short headers of all subroutines in file jlpsub.src can thus be 
printed as follow: 
jlp>list/all jlpsub.src/*=:** 

The headers in other files can be listed similarly (in addition to jlpsub.src, jlpint.src  may 
be of special interest). 

The longer forms of all headers can be listed as follows: 

jlp>list/all jlpsub.src/*=:*** 

The listing of short headers in file  jlpsub.src  included: 
*=jnewf=== file jlpint.src ========================= 
      subroutine jnewf(iunit,form,name,name2,errors) 
*   Opens a new file (possibly a new version). 
** 

The long header of this specific module can be printed as follows: 
jlp>list jlpsub.src/*=jnewf:*** 

The whole module jnewf can be listed as follows: 
jlp>list jlpsub.src/*=jnewf:*= 

4.6.2 Changing JLP subroutines 

File jlpint.src contains subroutine templates whose purpose is to help the user to write 
own special subroutines for data access, transformations, report writer etc. Also the 
main program in file jlp.src can be replaced with custom main program. It is 
recommended that before making changes, the corresponding modules are copied into 
an own file, and this file is linked before files provided by JLP files so that standard 
routines will be replaced.  

4.6.3 JLP data variables 

As described in Chapter 2.5, JLP puts d-, c-, x- variables in  the same vector 'V' when JLP 
read data or makes transformations. The variable names are stored in character vector 
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'VNAME'.  The user can not assume any specific order of V-variables, except that 
variables created by an xvar, cvar, or const command and in one dtran, xtran, or 
ctran transformation paragraph are consecutive (this can be used in %-loops in 
transformations). 

Variable lists 

 JLP refers to a subset of variables using integer vector called variable list having the 
following structure. For instance a variable list listxs is defined: 

      integer listxs(-1:MAXNX) 

where MAXNX is a global JLP parameter.  Element (-1) tells the maximum number of 
elements (i.e. listxs(-1)=MAXNX). Element (0) tells the actual number of elements 
(i.e.  0•listxs(0)•MAXNX). Element i, 0•i•listxs(0) refers to an element in V-
vector, the name of the variable is VNAME(listxs(i)). 

The user may need following subroutines for handling variable lists: 

*=ilapp=== file jlpsub.src ====================== 
      subroutine ilapp(ix,list,errin,errors) 
* Appends variable ix into a variable list 'list'. 
 
*=ilfind=== file jlpsub.src ============================ 
      subroutine ilfind(ix,list,ilout) 
* Finds the position of variable ix from a variable list. 

*=ilmerg=== file jlpsub.src =========================== 
      subroutine ilmerg(list1,list2,list3,errin,errors) 
* Merges variable lists list1 and list2 into list3 
 
*=ilput=== file jlpsub.src ======================= 
      subroutine ilput(ix,list,errin,errors,ilout) 
* Puts an element ix to a list if it is not there. 

*=ilret=== file jlpsub.src ========================================== 
      subroutine ilret(ix,list) 
* Removes an element ix from a variable list and puts it into reserve 
 

The  user may need e.g. the following  subroutines that treat also the names of 
variables: 
*=jname=== file jlpsub.src =============================== 
        subroutine jname(inp,names,nxres,nx,list,errors) 
* Finds numbers of variables and makes new variable names. 
 
*=joutl=== file jlpsub.src ==================== 
      subroutine joutl(level,buf,list,name) 
*  Print names of variables in a variable list. 
 
*=mlist=== file jlpsub.src ========================== 
      subroutine mlist(ch,ial,lop,nimi,nx,mul,errors) 
* Makes a variable list. 
 
*=mtja=== file jlpsub.src ===================== 
      function mtja(nimi,nx,xni) 
* Finds the number of a variable with name xni. 
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Special variables 

There are some special variables used for handling transformations etc. These variables 
should not generally be used for other purposes. JLP does not generally try to check if 
these variables are misused, as there are legal ways to handle these variables in 
nonstandard way (e.g. rejection variable 'reject' can be read directly from data). The 
global parameters for variable numbers and the names of the special variables are: 

*IVDATA 'data' variable 
*IVUNIT 'unit' variable 
*IVS 's' variable (current schedule) 
*IVONE number of variable having value 1. 
*IVDUPL number of 'duplicate' variable  
*IVSPLI number of 'split' variable 
*IVNS number of variable 'ns' 
*IVREJ number of variable 'reject' 

How these variables are treated is described in Chapter 2.5. 

4.6.4 Accessing stored c- and x-data 

The user may want to access the stored c-variables and x-variables e.g. in her/his own 
report writer. Variable list KEEPCL tells what variables are stored as c-variables in 
simple vector CMAT defined as 'real CMAT(MAXCMA)', where MAXCMA is a global 
parameter given in jlp.par. The number of stored c-variables is thus KEEPCL(0). The 
first KEEPCL(0) elements of CMAT are the c-variables for the first unit, and so on up to 
the last unit ML. The name of first stored c-variable is VNAME(KEEPCL(1)), etc. 

Variable list KEEPXL tells what are stored x-variables. Storage of x-variables is more 
complicated, because JLP is designed to be able to handle x-data that exceed the 
memory, and because JLP generates temporary x-variables for linear combinations of x-
variables appearing on the rows of a linear programming problem.  X-variables can be 
accessed by calling subroutine jstun for each unit started: 
 
*=jstun=== file jlp2.src ======= 
      subroutine jstun(ic,ranac) 
* Makes x-data ready for unit ic. 
** 
* Reads data from disk if necessary. 
* Updates LISTV0 so that variable KEEPXL(ix) for schedule is 
* can be accessed using statement function: 
* x(is,ix)=XMAT(LISTV0+(is-1)*NXDD+ix). 
* An equivalent (more complicated but clearly faster) 
* way to access several x-variables in the same schedule is to compute  
* the base addres for each schedule is as follows: 
* isbas = LISTV0 + (is-1) * NXDD 
* or if all schedules are acceses in order by defining starting 
* value of isbas and adding NXDD for each schedule. 
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* Thereafter x-variable KEEPXL(ix) can be accessed with statement function: 
* x2(ix)=XMAT(isbas + ix) 
* Note: KEEPXL, XMAT, LISTV and NXDD are globals variables 
*       accessed with 'needs:' 
* input parameters: 
          integer ic 
* ic    = unit 
          logical ranac 
* ranac = .true. if units are accessed in any order (i.e. 
*         not necessarily in order 1,2,...,ML. 
*         If data does not fit to the memory, it is recommended 
*         that even with ranac=.true. the unit numbers in consecutive 
*         calls are in increasing order (units may be missing) so that 
*         work file needs not to be rewinded repeatedly.  
******************************************************** 

Thereafter keepxl variables can be accessed with either of the statement function 
described above in the header of jstun. A global function subroutine is not used in 
JLP, because satement functions work much faster.  

4.6.5 Text buffers 

Text is stored in text buffers. Each buffer has a three character name called later 
'bufnam' e.g. bufnam='DTR'.  A text buffer is a single character variable to which all text 
lines are packed. The name of the variable is bufnam//'BUF', e.g. 'DTRBUF'. The length 
of the variable is determined by JMAKE parameter given in file jlp.par.  the name of the 
length parameter is 'LEN'//bufnam  e.g. 'LENDTR'.  Associated with each  buffer is a 
link vector with name 'LNK'//bufnam (e.g. 'LNKDTR')  which tells the size of the buffer 
used to  prevent overflow, and links to the first character in each  line.  The maximum 
number of lines in a buffer is given  by a parameter with name 'LIN'//bufnam,  e.g. 
'LINDTR'. The buffer name is stored in the buffer variable so  that the buffer 
subroutines can generate error messages if parameters are too small. The user may also 
use the following buffer subroutines: 

*=bufapp=== file jlpsub.src ========================= 
      subroutine  bufapp(inp,le,txtbuf,lnktxt,errors) 
*   Adds string inp to standard buffer txtbuf. 

*=bufio=== file jlpsub.src ============================= 
      subroutine bufio(what,line,L,errors) 
*   Sends commands to JLP and gets the JLP output. 
*   Handles command buffer 'INC' and output buffer 'OUT'.    

*=bufpri=== file jlpsub.src =========================== 
      subroutine  bufpri(nu,txtbuf,lnktxt) 
* Prints the contents of text buffer txtbuf into a file. 

For more information about text buffers, see the long headers of the above subroutines, 
especially of the subroutine buffapp. 

4.6.6 String manipulation 

The user may use the following string manipulation subroutines: 
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*=adjul2=== file jlpsub.src ============================================ 
      subroutine adjul2(inp) 
* Adjusts a character variable to the left, i.e. removes initial blanks 
 
*=chi5=== file jlpsub.src =========== 
      character*5 function chi5(i,il) 
* Returns integer i as character*5. 
 
*=chr8=== file jlpsub.src ==================== 
      character*8 function chr8(a) 
* Returns real value as a character*8 variable. 
 
*=chr10=== file jlpsub.src =========================== 
      character*10 function chr10(a) 
* Returns double precision a as character*10 variable. 
 
*=len1=== file jlpsub.src ========================= 
      function len1(str) 
*  Returns the position of first nonblank character. 
 
*=len2=== file jlpsub.src ================================== 
      function len2(str) 
* Returns the length of str when trailing blanks are ignored 
 
*=nexlim=== file jlpsub.src ============ 
      function nexlim(inp,ial,lop,limit) 
* Finds the next limiter. 

*=repl=== file jlpsub.src =========================== 
      subroutine repl(jono,jono1,jono2,lkm1,lkm2,lop) 
*  Replaces substring with another string. 
 
*=jrepl=== file jlpsub.src ================================  
       subroutine jrepl(jono1,i1,i2,lop,jono2,le2) 
*replaces the substring jono1(i1:i2) by string jono2(1:le2) 

4.6.7 Printing subroutines 

JLP prints almost all results using subroutine jout that prints a character line 
(character variable) to terminal, output file and output buffer according to the current 
options of printing (determined by printlevel, outlevel, outfile, buflevel). 
(Currently the optimization algorithm prints information about how the optimization 
proceeds only to the terminal.)  The user can also call this and other printing 
subroutines: 
*=jout=== file jlp2.src =============================== 
      subroutine jout(ilevel,buf) 
* Outputs a line into screen and/or file and/or buffer. 
 
*=jouti=== file jlpsub.src ============= 
      subroutine jouti(level,buf,ivec,n) 
*          Outputs an integer vector. 
 
*=joutl=== file jlpsub.src ==================== 
      subroutine joutl(level,buf,list,name) 
*  Print names of variables in a variable list. 
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4.6.8 Transformation subroutines 

JLP handles all transformations (dtran-, ctran-, xtran-, dupl-, and parin- 
transformations and definitions of domains) with the same subroutines. 
Transformations are first compiled with subroutine compi: 
 
*=compi=== file jlpsub.src ========================================= 
      subroutine compi(teku,nteku,nimi,nxres,nx,x,nint,npfrst,nxtot, 
     6 jono,errors,ixoutl) 
*  Compiles a transformation line jono into vector teku. 

Compiled transformations are then made for variables stored in vector x with 
subroutine muun: 
 
*=muun=== file jlpsub.src =========== 
         subroutine muun(x,teku) 
*  Computes compiled transformations. 

The user can use these transformation routines for own purposes. 

If there are no defined transformations, subroutine muun can be called safely (i.e. with 
immediate return) if the vector of compiled transformations (teku) is properly 
initialized (otherwise unpredictable problems with memory will occur). 

4.7 Creating Own Transformation Subroutines 

It is possible to add own functions that can be used in transformations exactly as the 
predefined functions. Own functions can be added by editing function ifunc and 
subroutine func in file jlpint.src.  JLP global parameters and variables can be used but 
they are not generally necessary.  

To show how this can be done, function npv is included as an example. Transformation 
defined as: 

present_value=npv(3,100,0,50,2,-70,10) 

will calculate the net present value using 3% interest rate when there is instant income 
100, income 50 after 2 years and payment 70 after 10 years. There can be any number of 
(income,time) - pairs in the function call, and any of the arguments can be a variable.  

A new function can be defined by editing function ifunc  and subroutine func 
properly: 

*=ifunc=== file jlpint.src ========================================= 
        function ifunc(name) 
* Defines function names for own functions and returns their number. 

*=func=== file jlpint.src ============== 
      subroutine func(teku,x) 
*  Compute the value of an own function. 
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4.8 User Designs for RHS Generation 

The user defines constraints in the problem paragraph in form: 
 
volume =1000 / >100 <1000 / >0 

Then solve r command tells JLP to use rth set of  RHS's, or solve +r  tells JLP to use 
the set of  RHS's with number: previous_number + r. If many sets of RHS's are used in a 
systematic way it is tedious to write all the combinations into the problem paragraph. If 
the solve command is given with option starting with '/m', e.g.: 
 
solve/mmethod r  

   or 
solve/mstandard +r  

then the subroutine next  is used to generate RHS's: 
 
*=next=== file jlpint.src ================== 
      subroutine next(method,ir,errors) 
* Gets new upper and lower bounds for JLP. 

 The whole option is transmitted to next  as a character variable method and can be 
used as input parameter for specifying the method for generating the RHS. The lower 
and upper bounds given in the problem paragraph can be used as parameters for  
defining new RHS's. Subroutine next contains the code for a method 'mstandard' which 
generates RHS's exactly in the same way as the standard interface without explicit 
method. The standard interface does not use subroutine next, so the user can safely edit 
it.  

4.9 User Defined Data Input 

If the format for x-data is given by 'xform m'  (where 'm' stands for 'my_own'), then both 
x-data and c-data are read in using user defined subroutines. If 'xform m' is in effect, 
JLP opens files and reads records as follows (transformations etc. are made as described 
in Chapter 2.5):  
 
 call minit   - initializes reading 

 do ifi=1, (number of xdat files) 

  call mopen              ! Open ifith cdat and xdat file 

                               ! get the number of treament units in file 

  do iu=1, (number of units) 

   call mgetc         ! read values of cvar variables of the unit

     do is = 1, ns    ! ns = number of schedules in the unit 

     call mgetx ! read values of xvar variables from xdat file 

   end of loop over schedules 
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  end of loop over units 

 end of loop over files 

 call mfinit  - open files can be closed etc. 

Terms 'open a file' and 'reading variables' mean that such operations are done in the 
user subroutines that work similarly as if files were opened and records read. For the 
user, the essential fact is in what place in the loop structure each subroutine is 
called.There does not need to be a one-to-one connection between the logical and 
physical operations. For instance, xdat file names can be area codes of a data base 
system, and c-variables and x-variables may be stored in the same data base. Or, files 
can be opened in the mgetc subroutine. It is also possible that treatment schedules are 
simulated in place. JLP does not change values of c-, and x-variables (unless modified by 
ctran and xtran transformations), so it is possible that mgetc and mgetx give only 
the changing values. This may be handy if data contain several levels of hierarchy (e.g., 
state, coynty, village, farm). 

File jlpint.src contains subroutine templates that the user can use as starting point when 
defining own subroutines, or as dummy subroutines in case no special input 
subroutines are needed: 

*=minit=== file jlpint.src ============================ 
       subroutine minit(errors) 
* Initilizes everything for reading data with 'xform m' 

*=mopen=== file jlpint.src ============================================ 
        subroutine mopen(mlfil,errors) 
* Initializes reading of new data, called for each element of xdat-list 

*=mgetc=== file jlpint.src ========================= 
      subroutine mgetc() 
* reads the c-variables of the next calculation unit 

*=mgetx=== file jlpint.src ================== 
       subroutine mgetx() 
* Rreads the x-variables of the next schedule. 

*=mfinit=== file jlpint.src ======================== 
       subroutine mfinit(errors) 
* Cleans everything after reading data with 'xform m' 

The provided subroutine templates work in the same way as if 'xform b' and 'cform 
*'  would be in effect. 

4.10 Writing Own Report Writer 

If the printing options provided by JLP (show, sched) are not enough, or the results 
are needed in binary form for further analysis, the user can write his own report writer. 
Using JLP subroutines and global variables, a report writer can have access to the 
following variables: 

1) termination status of the problem 
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2) RHS's used in the solution 
3) values of rows (utility constraints + objective function) 
4) shadow prices of utility constraints 
5) values of (aggregated) x-variables (including x-variables not used in the problem 

definition)  
6) shadow prices of x-variables included in the problem 
7) cost of forcing x-variables to have smaller or greater value they obtained 

according to the solution (x-variables may or may not have been used in the 
problem definition) 

8) values of z-variables used in the problem definition 
9) reduced costs of nonbasic z-variables 
.............. 
10) weights of schedules in the solution 
11) shadow prices of units (= shadow prices of basic schedules) 
12) shadow prices of nonoptimal schedules (reduced cost for forcing nonbasic 

schedules into the solution) 

JLP prints quantities 1) – 9) automatically after solving each problem (according to the 
current options of show command).  How the user can replace or augment this report is 
described in the next section. JLP prints quantities 10) – 12) connected with schedules 
with sched command. How these reports can be replaced or augmented is described in 
the section thereafter. 

4.10.1 General part  of the report writer 

The general report JP prints after each solution can be replaced or augmented by 
editing the subroutine template repo: 
 
*=repo=== file jlpint.src ================= 
      subroutine repo(inp,errors) 
* subroutine template for own report writer 

If the user writes a command line starting with 'repo' then JLP calls subroutine 'repo'. 
The whole command line is transmitted as an input character variable to the 
subroutines, so that the user can specify in the command line all necessary printing 
options. If option '/repo' of command show is in effect, then the report is generated 
always with repo instead of the standard JLP report writer. The command line 
transmitted to repo is in this case the solve command line, and can not be used so 
easily to transmit report writer options. The provided template for repo prepares 
basically the same report as JLP usually does but in a slightly simplified format. 

If JMAKE option $MREP is in effect, then JLP will call subroutine mrep exactly in the 
same ways as repo is called. That is, if a command line starts with  'mrep' then JLP calls 
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subroutine 'mrep'. And if option '/mrep' of command show is in effect, then the report 
is generated with mrep instead of the standard JLP report writer. If both option 
'/repo' and option '/mrep' are in effect, then JLP calls first repo and thereafter 
mrep. Report writer repo is intended for a general purpose report writer, and mrep 
for report writer for special data structures (e.g. MELA system), i.e. for the case when 
the data are read in with 'xform m'.  

Because the use of mrep is identical to the use of repo, there is no separate subroutine 
template for subroutine mrep (one can start making mrep from a copy of repo where 
the subroutine name is changed into mrep). 

The header of repo contains a list of those global variables that are possibly needed. 
The options of show command determine what global variables are actually computed 
by JLP. For instance, the integer approximation is computed only if '/int' option is in 
effect, and cost of decrease and increase is computed only if '/cost' option is in effect. 
The shadow prices of  x-variables are not computed into global variables, because they 
are fast to compute with subroutine jpix when needed: 
 
*=jpix=== file jlp2.src ==================== 
       subroutine jpix(idom,iv,ipres,pix) 
* computes the shadow price for an x-variable 

4.10.2 Report writer for schedule information 

The user may want to treat the schedule information (items 10-12 above) differently 
than  command sched allows.  A subroutine template showing how to access the 
necessary global variables is in subroutine own1: 
*=own1=== file jlpint.src =========================================== 
      subroutine own1(inp,errors) 
* Subroutine template for own command given in OWN1 option in jlp.par. 
* Currently includes template for report writer replacing  
* sched command and showing how to access c- and x-data. 
** 

Subroutine own1 can be accessed with a command given in file jlp.par (see section 
4.1.2). The default command name is own1. The user may wish to combine all report 
writing procedures into subroutine repo and/or subroutine mrep described above. 

The shadow prices of schedules (including shadow prices of units) are not computed 
into a global vector. They can be accessed with subroutine jpis: 
*=jpis=== file jlp2.src =================== 
      subroutine jpis(iunit,is,spsc) 
* Computes the shadow price of an schedule. 
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 4.11 Creating Own Interface 

JLP is designed so that the user can easily create totally new interface with menus and 
buttons etc. on the provided command based interface. This can be done using input 
and output buffers.  There are three main strategies for building an own interface. 
Because JLP controls command input and printed output independently, it is possible 
to choose the input method from one strategy and output method from another. 

4.11.1 Main program interface calling JLP 

The provided main program in file jlp.src is very simple. It basically just calls 
subroutine jlpin that contains the standard JLP interface. Thus the user can write an 
own main program that will replace the standard main program.  

The main program must (here the program calling JLP subroutine jlpin is called 
main program, it can also be a subroutine) define an character variable for error 
messages and a variable for receiving output: 
 
      character*80 errors 
      character*78 outlin  ! the length can be also e.g. 80 
* errors must initially be empty 
      data errors/' '/  

The main program can communicate with jlpin using subroutine bufio: 
 
*=bufio=== file jlpsub.src ============================== 
      subroutine bufio(what,line,L,errors) 
*     Sends commands to JLP and gets the generated output 
** 
* INPUT: 
* what = 'in'  adds line to command buffer INC 
*      = 'in/clear' clears command buffer 
*      = 'out' gets a line from output buffer OUT 
*      = 'out/clear' clears output buffer 

The main program can put a package of commands to the command buffer using 'in' 
as what parameter of bufio.  If last command put to the buffer is 'end' then the 
control can be obtained back to the main program (otherwise control remains in JLP, 
usually JLP would wait input from the terminal). For instance: 
 
* output is put to the output buffer: 
      call bufio('in','buflevel 2',L,errors)  
      if(errors(1:1).ne.' ')goto 999 ! errors are checked there 
*      error messages start always in column one, it is faster to test 
*      only first character 
      call bufio('in','end',L,errors) 
      if(errors(1:1).ne.' ')goto 999 

JLP can then be asked to execute the commands: 
 
      call jlpin(errors) 
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If parameter buflevel has been >0, the output has been send to the output buffer that 
can be printed e.g. as follows:. 
 
10     call bufio('out',buf,L3,errors) 
       if(L3.lt.0)goto 20 
        if(l3.gt.0) write(n6,*)buf(1:L3) 
      goto 10 
20    (new commands) 

After solving a linear programming  problem, an own report generator can be accessed 
either directly from the main program or via JLP (e.g. with JLP command report). 

4.11.2 Interface in a subroutine  called by JLP 

If JLP gets command buff it calls subroutine buff: 
 
*=buff=== file jlpint.src =============================== 
         subroutine  buff(inp,errors) 
* An example of an interface operating through the buffer. 

The subroutine template written to subroutine buff is  handling similar interface as 
the main program interface described in the previous section.  Commands  are read 
from the terminal with prompt 'bufin>' and they are put into the command buffer. 
When  string '//' is encountered, control returns to the calling subroutine jlpin and 
stored commands are executed.  If buff is the last command put to the buffer, control 
returns back to this subroutine. If buflevel is given a positive value, then output goes 
to output buffer that can treated in this subroutine first. 

The main program provided will give control directly to subroutine buff, if  JMAKE 
option $INIT1 in jlp.par is given value 'buff'. 

It depends on the structure of the interface and on what other tasks the interface is 
controlling if it is easier to build the interface into main program (or a subprogram) that 
calls jlpin, or if it is better to build the interface into subroutine buff that is called by 
jlpin. 

4.11.3 Replacing terminal input and buffer output 

The interface  structures described in the two previous sections are based on the idea 
that the interface is intelligent, i.e., the interface knows what it is striving at so that it 
can send to JLP command packages that accomplish major tasks. But an interface may 
be just an other way of sending commands to JLP and printing the results. For instance, 
the user may want to send commands using buttons or menus and get results to 
different windows.  In such an interface the main thing is that terminal input and 
output (FORTRAN read and write statements) must be replaced with some other 
operations.  The JLP package provides the following tools for this. 
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Replacing terminal input 

If JLP gets command ownread, then the terminal input (reading from unit n5) is 
replaced by call to subroutine ownrea: 
**=ownrea=== file jlpint.src=================================== 
         subroutine ownrea(line) 
* An example of own input function that replaces terminal input. 

The provided template for ownrea just reads the command line from the terminal. 

The command ownrea affects only reading from the terminal, i.e., include command 
can still be used to get input from files. 

Command ownrea will toggle, i.e., giving another ownrea terminal input is used 
again.  

Replacing buffer output 

The output buffer provides an way to replace terminal output. If printlevel is set to 
zero, and buflevel is given a positive value, then nothing is printed to the terminal 
and all output goes to the output buffer. The output buffer can then be handled in the 
main program after returning to the main program after command end, or in the 
subroutine buff after giving the control to subroutine buff by command buff. If the 
buflevel is given a negative value, then instead of putting a line into the output 
buffer, JLP calls subroutine ownwri: 
*=ownwri=== file jlpint.src ================================ 
         subroutine ownwri(line) 
* An example of own output function replacing buffer output. 

With ownwri the output can be handled line by line. It may be easier to make input 
and output co-operate smoothly, if entries ownrea and ownwri are put to the same 
subroutine.   

A possible use for ownwri is to get better scrolling properties on the screen than 
obtained by unqualified writing to the standard terminal unit. 

4.12 Adding Own Commands to JLP 

The user may add two commands to the JLP commands as follows (on request 
arrangements for more commands can be easily made). The names of commands can be 
given by giving proper values for JMAKE options $OWN1 and $OWN2 in jlp.par. Let us 
call the commands own1 and own2 (as is the default given in jlp.par).  When these 
commands are encountered, JLP calls user subroutines own1 and own2: 
*=own1=== file jlpint.src =========================================== 
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      subroutine own1(inp,errors) 
* Subroutine template for own command given in OWN1 option in jlp.par. 
* Currently includes template for report writer replacing  
* sched command and showing how to access c- and x-data. 
** 
* INPUT:  inp    = the whole command line (extra blanks are removed) 
 
*=own2=== file jlpint.src =========================================== 
      subroutine own2(inp,errors) 
* Subroutine template for own command given in OWN2 option in jlp.par. 
 

These subroutines get the whole command line as the input, so all command options 
etc. can be implemented by interpreting the command line properly. As all JLP global 
parameters and variables can be accessed using 'needs:' construction of JMAKE, the 
user may do whatever she/he wants in these subroutines. 
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5. ERRORS AND TROUBLESHOOTING 

5.1 Syntax Errors 

If JLP encounters an illegal command in batch mode, the program terminates (returns 
to the main program) with the proper error message. In interactive mode (default) all 
open include files are closed, the error message is printed, and the control is given to the 
input terminal. Note that only the significant part of a command is interpreted, and e.g. 
'printleuvel 2' does not cause an error. 

JLP prints warning messages in case no error has occurred but the result of a JLP 
command may be different than the user may expect. For instance, if JLP is asked to 
solve a problem without an objective function, JLP will print: 
*W* no objective variable, finding feasible 

The author is expecting feedback from the users to improve the error and warning 
messages, and how to deal with error situations.  

5.2 Dimensions of Vectors  

JLP tries to check the ranges of character substrings and array indexes. If an overflow 
would occur, JLP prints an error message telling what parameter should be increased. 
For example the error message for parameter MAXNX is: 

*PAR* increase MAXNX 

The parameter MAXNX in file jlp.par should then be increased and JLP rebuilt as 
described in Chapter 4.1. It is possible to continue the current session with other 
commands. However, if the error message comes in form: 
*F*PAR* increase MAXSPL 

then the data areas are out of order, and the current session can be continued only after 
init. It is recommended that JLP source files are compiled without range checking 
option, unless the user suspects that JLP fails in the range checking (which is, in theory, 
possible). Programs compiled without range checking are smaller and faster.  
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5.3 Problems in the Optimization 

A major difficulty in a nontrivial numerical algorithm is that unavoidable rounding 
errors may prevent the algorithm from finding the solution within a reasonable 
accuracy. Even if JLP has solved all the test problems, there are certainly problems 
where JLP fails. In case of difficulties, and before consulting the author, the user should:  

i) use 'printlevel 9' to get all the diagnostic output that might explain the cause of the 
problem,  

 ii) try to solve modified problems, e.g., by adding a constraint at a time, to see when 
the problems arise. 

iii) modify  parin  parameters tole, invert  and/or  wmin (see section 2.7.4). 

5.3.1 Degeneracy due to linear dependency 

 A basic variable  in a linear programming problem is called degenerate if its value is 
zero.  Degeneracy can cause unstable behavior. There are two types of degeneracy 
problems that have been addressed in the design of JLP.  

First degeneracy situation arises when some constraint rows are linear combinations of 
others. An example: 
> prob 
> income.2-income.1=0 
> income.3-income.2=0 
> income.4-income.3=0 
> income.5-income.4=0 
> income.5-income.3=0 
> npv.0 max 
> / 

Now the last constraint 'income.5-income.3' is a linear combination (sum) of the 
two previous constraints. JLP keeps all constraints (including equality constraints) 
nonbinding as long as they are satisfied up to the tolerance computed from the 
minimum and maximum value of each x-variable. Thus in the above sample problem 
the constraint for 'income.5-income.3' will not become binding, and following 
solution is obtained: 
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row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  1) income.2-income.1  . . . . .  0.00000000 -0.2052712        0.000000     L 
  2) income.3-income.2  . . . . .  0.00000000 -0.2147269        0.000000     L 
  3) income.4-income.3  . . . . .  0.00000000 -0.0895401        0.000000     L 
  4) income.5-income.4  . . . . .  0.00000000 -0.0410396        0.000000     L 
  5) income.5-income.3  . . . . .  0.00000000 0.00000000        0.000000 
  6) npv.0 . . . . . . . . . . . . 33459072.7 1.00000000           max 

The order of the last two constraints were then changed. 
> prob 
> income.2-income.1=0 
> income.3-income.2=0 
> income.4-income.3=0 
> income.5-income.3=0 
> income.5-income.4=0 
> npv.0 max 
> / 

The last constraint is nonbinding also this time, and following results are obtained: 
______________________________________________________________________________ 
row                                  value       shadow     lower    upper 
                                                 price      bound    bound 
______________________________________________________________________________ 
  1) income.2-income.1  . . . . .  0.00000000 -0.2052712        0.000000     L 
  2) income.3-income.2  . . . . .  0.00000000 -0.2147269        0.000000     L 
  3) income.4-income.3  . . . . .  0.00000000 -0.0485004        0.000000     L 
  4) income.5-income.3  . . . . .  0.00000000 -0.0410396        0.000000     L 
  5) income.5-income.4  . . . . .  0.00000000 0.00000000        0.000000 
  6) npv.0 . . . . . . . . . . . . 33459072.7 1.00000000           max 

Thus the results look different depending on the order of constraints. Note the relations 
between the shadow prices of this and the previous problem: -0.0485004-0.0410396= -
0.089540. The shadow prices for x-variables look the same in both cases. 

If the computed tolerance range for constraints is too small, then linear dependencies 
may remain undetected, and JLP may behave in an unstable way, and may or may not 
find the solution.  If the tolerance range is too wide, then  JLP will get a reasonable 
solution but the solution is not exact in the sense that a constraint that should be 
binding is not. See section 2.7.4 for how to change the default tolerance. 

5.3.2 Degeneracy when lower bound = minimum  

Suppose that the simulated alternatives contain alternatives with herbicide treatments 
(x-variable herbicide >0) , and those alternatives are economically favorable. If we 
set a constraint 'herbicide=0' then this constraint will become binding and will get a 
nonnegative shadow price. Thus the algorithm takes a schedule with herbicide>0 as 
a basic schedule, even if the weight of such a schedule is zero. (Earlier versions of JLP 
had difficulties in finding the solution in this case. ) 

A faster way to implement such constraints would be to reject unacceptable alternatives 
in xtran- transformations: 
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xtran 
if herbicide>0 then reject 
/ 

If a constraint is forced this way, then no shadow price is obtained.  
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6. LINEAR PROGRAMMING ALGORITHM 

In this part, the mathematical background of JLP algorithm is briefly described.  The 
domain structure has effect only on the way different variables are accessed and not in 
the basic optimization algorithm as such. Thus the algorithm is described without a 
reference to the domains. The realization of the domain structure is then described at 
the end of the part.  The reader is assumed to be familiar with basic linear 
programming concepts (see e.g. Luenberger 1973). 

6.1 Problem Formulation 

Let us first restate the problem definition from Chapter 1.2  in a slightly different form 
(see  Chapter 1.2  for interpretation of the symbols) 

Max  or Min z0 � a0 � x � b0 � z  (6.1) 

subject to: 

ct � at � x � bt � z � Ct , t � 1,..., r  (6.2) 

��

xk � xk
ijwij � 0

j�1

ni

�
i�1

m

� , k � 1,�, p  (6.3) 

��

wij
j�1

ni

� � 1, i � 1,�,m  (6.4) 

wij � 0 for all i and j   (6.5) 

zk � 0 for k � 1,... ,q  (6.6) 

Vectors z, and x are: 

x � x1 ... xp�
�

�

�

 (6.7) 

z � z1 ... zq�
�
 (6.8) 

Constraints (6.2) can be written in matrix form as: 

c � Ax � Bz � C  (6.9) 
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The problem is easier to understand (and define) if the constraints including the 
aggregate xk-variables and their definitions are presented separately, as above. An 
equivalent problem would be obtained by substituting the definitions of x-variables 
directly into the objective (6.1) and constraints (6.2) (as is the formulation of Dantzig 
and Van Slyke 1967). Note that without a loss of generality we might assume that on 
each row t  all coefficients atk  are zero except possibly one coefficient is one. For 
instance, if some row t contains 

2 x2 +3 x2   

then this linear combination can be replaced by a new variable xp+1  for which we 
define: 

xp�1
ij

� 2x2
ij
� 3x2

ij    

It is more natural for the user to define problems without artificial new x-variables, but 
computationally a more efficient algorithm is obtained by making new variables for 
linear combinations of x-variables. These variables are called 'temporary x-variables' in 
JLP output.  The mathematical basis of JLP is here described assuming that there can be 
several x-variables on each row. It is also indicated how computations will simplify if 
there can be only one x-variable on each row without a coefficient (i.e. with coefficient 
1). This formulation is called one-x formulation.  

Any standard linear programming algorithm can be used to solve the problem, at least 
after writing any constraint t of form (6.2) as two separate constraints, one for the lower 
bound and the other for the upper bound, or as an equality constraint in case ck=Ck. 
However, to solve the problem efficiently, the special features of the problem should be 
taken into account.  

JLP applies the following techniques: 

(i) Generalized upper bound technique (see Dantzig and Van Slyke 1967) is used to 
handle the area constraints (6.4). 

(ii) Using the revised simplex method (used also by Dantzig and Van Slyke 1967), the 
algorithm makes small local steps, i.e. without having the whole tableau in the 
memory. 

(iii) The basic unit in the optimization is one treatment unit, thus the algorithm applies 
a kind of decomposition technique. 

(iv) An upper bound technique is used to handle simultaneously both the lower and 
upper bound. 

 



 JLP 105    

6.2 Generalized Upper Bound Technique 

6.2.1 Basic idea: key variables 

The generalized upper bound technique is the most important special feature of the 
algorithm. The number of constraints in the problem is m + 2r, and generally m is large 
and r is small. As the speed and memory requirements of a linear programming  
computer program depend mainly on the number of constraints, the original problem 
may take quite much time and memory. Applying the generalized upper bound 
technique for the area constraints and ordinary upper bound technique for the upper 
bounds, the effective number of constraints is r. 

The basic idea of the generalized upper bound technique is that the area constraint (6.4)  
for treatment unit i  

wij
j�1

ni

� � 1  

will be automatically satisfied if we select from each unit i a schedule J(i), and write 
 in terms of the other weights: wiJ( i)

wi J (i) � 1 � wij
j� J( i)
�   (6.10) 

Constraint (6.3) defining variable xk, k=0,...p can then be written without variables w : iJ( i)

xk � xk
ijwij � xk

iJ(i) 1 � wij
j �J (i)
�

��

��
��

��

��
	�

j�J (i)
�


�

��
��

�

��
��

i�1

m

� � 0   (6.11) 

or 

xk � xk
ij
� xk

iJ( i)� �wij � xk
iJ(i)

i�1

m

�
j�J (i)
�

i�1

m

�  (6.12) 

The area constraints (6.4) can be dropped from the problem, since (6.10) automatically 
guarantees that they are satisfied. However, for each unit i, the nonnegativity 
constraint w  will  become: i J (i) � 0

��

wij
j�J (i)
� �1, i � 1,�,m  (6.13) 
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Thus the number of constraints (nonnegativity constraints are not counted) is the same 
as in the original formulation, the area constraints were just changed into constraints 
(6.13) . However, if the schedules J(i) are chosen at each stage of the solution process so 
that wiJ(i) would be a basic variable  (i.e. wiJ(i) >0), then these new constraints are never 
active. Thus the working basis can be formed without having basic variables 
corresponding to these constraints.  

The problem definition uses inequality constraints. As the matrix algebra of linear 
programming is based on equalities, artificial surplus or slack variables are usually 
introduced to make inequalities formally into equations. JLP treats nonbinding 
constraints without surplus and slack variables by adjusting the dimension of the basis 
matrix according to the number of active constraints. This can make the algorithm 
faster if there are several nonbinding constraints.  

Let us first describe how the optimization proceeds at any stage after finding a feasible 
solution. How to obtain a feasible solution is described later. A stage of optimization 
can be described as follows: 

For each unit i there is an key schedule  J(i) for which wiJ(i) >0. Variables wiJ(i) ("key 
variables" of Dantzig and Van Slyke 1967) are implicit basic variables they are not 
included in the working basis. Let s denote the sum of x-variables over the key 
schedules, i.e.: 

s � xiJ (i)

i�1

m

�  ,  (6.14) 

where 

x ij
� x1

ij .. . xp
ij� �
�
   (6.15) 

There are R binding utility constraints, 0 ≤ R ≤ r , for each binding utility constraint t 
either the lower bound ct or the upper bound Ct is active. Let us denote the R-vector of 
the active bounds by cb. Assume for simplicity that the binding constraints are the R 
first.  

Correponding to the R binding utility constraints, there are R basic variables among w- 
and z-variables (these variables form the "working basis" of Dantzig and Van Slyke 
1967).  Let the number of basic basic z-variables  be Q. Assume for simplicity that the 
basic z-variables are the Q first.  Let P =R–Q be the number of basic w-variables  (in 
addition to the implicit basic variables w ). These w-variables are called explicit basic 

w-variables, and the corresponding schedules are called explicit basic schedules. Let us 
index the explicit basic schedules by u, and denote the unit and schedule for explicit 

i J (i)
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basic schedules by ij(u), u=1,...,P. Note that there can be more than one explicit basic 
schedule in the same treatment unit. Denote further: 

w � wij(1) , .. . ,wij (P)� �
�
  (6.16) 

  du � x ij (u)
� xiJ(u) ,  u �1,.. ., P ,  (6.17) 

D � d1 . .. dP� �. (6.18) 

Thus the current value of x is: 

x � s � Dw  (6.19) 

 Let us decompose A, B, b0, and z separating binding and nonbinding constraints and 
basic and nonbasic variables: 

  
z �

zb

zn

��

��
�� ��

��
,  where zn � 0  (6.20) 

b0 �
b0b

b0n

��

��
�� ��

��
 (6.21) 

A �
A b

A n

��

��
�� ��

��
 (6.22) 

B �
Bbb Bbn

Bnb Bnn

��

��
�� ��

��
. (6.23) 

The current value of the objective function is : 

z0 � a0 � x � b0 � z � a0 � s � a0 �Dw � b0b � zb   , (6.24) 

where the current values of w and zb can be solved using the assumption that the R first 
utility constraints are binding: 

  Ab x � Bbbzb � cb , or  (6.25) 

  Abs � AbDw � Bbbzb � cb ,  or  (6.26) 

  AbDw � Bbbzb � cb - Abs ,  or  (6.27) 

  
AbD Bbb� �

w
zb

��

��
�� ��

��
� cb - Abs ,  or  (6.28) 

  

w
zb

��

��
�� ��

��
� AbD Bbb� ��1 cb - Abs� �. (6.29) 
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The matrix AbD Bbb� � is the current (working) basis matrix of the problem. 

6.2.2 Entering variable 

There can be three different possibilities to improve the current solution: 

i) A new schedule j for some unit i  enters into the solution (more precisely:  weight wij 
enters into the the solution). 

ii) A nonbasic z-variable enters into the solution 

iii) A binding constraint becomes nonbinding (the slack or surplus variable of a binding 
constraint enters into the solution). 

 New schedule enters  

Let us consider what will happen if schedule j for some unit i  enters into the solution 
with weight �. Let w+ denote the new values of the weights of the current explicit basic 
schedules, let zb+ be the new values of the basic z-variables, and let d* denote the 
difference: 

d*
� xij

� xiJ( i)  (6.30) 

New value of the x-vector is denoted as x+ and is obtained as: 

  x�
� s � Dw

�
� �d* (6.31) 

Binding constraints remain satisfied if (see Eq. 6.27 ): 

AbDw
�
� �Abd*

� Bbbzb� � cb � Abs  (6.32) 
or  

AbD Bbb� �
w

�

zb �

��

��
�� ��

��
� cb � Abs � �Abd* (6.33) 

Hence: 

w
�

zb�

��

��
�� ��

��
� AbD Bbb� ��1 cb � Abs � �Abd*� � (6.34) 

or  

 
w

�

zb�

�� ��
��
�

w
zb��

�� ��

��
�� ��

��
� � AbD Bbb� ��1Abd*   (6.35) 

Denote  
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H � AbD Bbb� ��1
�

Hx

Hz

��

��
�� ��

��
, (6.36) 

where Hx contains P  first rows and Hz  Q last rows of H. 

Then 

x
�
� s � Dw

�
� �d*

� x � � �DHxAb � I� �d* ,  and (6.37) 

z
�
� zb � �HzAbd*  (6.38) 

Thus the new value of the objective function is 

z0� � z0 � � a0 � �DHxAb � I� �� bb �Hz Ab� �d* , or (6.39) 

z0� � z0 � �v x �d
* ,  where (6.40) 

vx � � a0 ��vc �Ab , where (6.41) 

vc � � a0 �DHx � bb �Hz � a0 �D bb �� �H  (6.42) 

is the vector of shadow prices of the active constraints (more precisely, this vector is the 
shadow price vector at the solution). 

If vx �d
*
� 0 , or vx � x

ij
� vx �x

iJ(i) , then the solution will improve if schedule j is put into 
the solution. Thus  the value of a schedule in a unit can be computed using the 
marginal prices of x-variables. A nonbasic schedule can enter into  solution if its value is 
greater than the value of the key schedule. 

In the one-x formulation all elements on each row of Ab  are zeros except possibly one 
element is one.  Thus the computations simplify considerably. Each row of matrix A  
needed in the above formulas is either zero or is obtained by picking a row of D. In 
computing the pricing vector vx, we note that a0 is either zero or contains one in some 
position, and postmultiplication of vector vc by Ab  just adds the elements indicated by 
the columns of Ab. Thus the total number of computations needed to compute vx  is 
very small.  

bD

New z-variable enters 

Let us consider what will happen if a new z-variable, e.g. zQ�1 enters into the solution. 

Let � be the new value of zQ+1 . Let  denote the coefficient (column) vector of zQ+1 in 
the binding constraints, and let b  denote the coefficient of 

bb
*

*
0 zQ�1 on row 0. The binding 

constraints remain satisfied if: 
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 A . (6.43) bDw
�
� Bbbzb� � �bb

*
� cb � Abs

We see that the equation is otherwise as Eq. (6.32) but A is replaced by b . Thus  bd*
b
*

w
�

zb�

��

��
�� ��

��
�

w
zb

��

��
�� ��

��
� � A bD Bbb� ��1bb

* . (6.44) 

In the case of the entering schedule, we had to take into account the direct effect of 
entering schedule on the x-variables. Now the values x-variables are changed only 
through the changed weights of schedules in the basis. Thus  

x
�
� s � Dw

�
� x � �DHxbb

* , and (6.45) 

zb� � zb � �Hzbb
*  (6.46) 

The new value of the objective function is 

z0� � z0 � �b0
*
� � a 0 �DHx � bb �Hz� �bb

* , or (6.47) 

 z0� � z0 � � b0
*
� v c �bb

*� �,  where (6.48) 

The shadow price vector vc  is given in (6.42). 

Thus the objective function will increase if b . If b  then 
 is the reduced cost  that would result if the z-variable would be forced to the 

solution.  

0
*
� vc � bb

*
� 0 0

*
� vc � bb

*
� 0

vc � bb � b0
* *

 Slack or surplus variable enters 

Assume that for some constraint t the upper bound Ct  is binding and the lower bound 
ct  is strictly less than Ct . Then it may happen that when dropping the constraint, and 
letting the value of the row to decrease, the objective function may increase. An 
equivalent description for this is that the so called slack variable of constraint t  enters 
to the solution. (JLP does not actually use slack and surplus variables, but they are 
useful for describing the situation when a binding constraint becomes nonbinding.) 
Thus the above analysis for the entering z-variable applies. The slack variable of 
constraint t is a z-variable so that 

a t � x � bt � z � slackt � Ct  (6.49a) 

i.e. it has coefficient one on row t  and zero on other rows. The objective function can be 
inreased by relaxing the constraint t if element t of v  is negative. c
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Similarly, if constraint t is at the lower bound ct  and ct <Ct , we should consider 
entering the surplus variable for constraint t into the solution. The surplus variable of 
constraint t is a z-variable so that 

a t � x � bt � z � surplust � ct  (6.49b) 

i.e., it has coefficient -1 on row t  and zero on other rows. Thus the objective function 
can be inreased by relaxing the constraint t if element t of v  is positive. c

6.2.3 Leaving variable 

When a new variable enters into the solution, the objective function increases in 
proportion to the new value � of the entering variable. The new value will be increased 
until some basic variable becomes zero. That variable then leaves the basis. Three cases 
may occur: 

(i) The weight w  of the key schedule of some unit i (i may or may not be the same 
unit for an entering schedule) becomes zero. Note that w   is not formally a basic 

variable of the modified problem. This is equivalent to the case that an implicitly 
treated constraint  becomes binding.  

iJ( i)

j�

iJ( i)

w 1ij
J (i)
� �

(ii) The weight w  of an explicit basic schedule will leave the basis. ij

iii) A basic z-variable leaves the basis 

(iv) A nonbinding utility constraint t, R<t≤r will become binding (at lower or upper 
bound). 

To determine which of the three cases occurs, we need to compute the critical value �* 
in each case.  Let  us first present in a unifying formalism how the w-, z-, and x- 
variables change when a new variable enters: 

w
�
� w � �rw  (6.50) 

x
�
� x � �r x  (6.51) 

z
�

� z � �rz  (6.52) 

where 
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rw �

�H xAbd* ,  if a new schedule enters
�H xbb

* ,     if a new z - variable enters
tth  column of � Hx  if surplus variable of constraint t enters 
tth  column of Hx  if slack variable of constraint t enters   

��

��
��

��
��

 (6.53) 

  

rx �

�DHxAb � I� �d*,  if a new schedule enters
�DHxbb

* ,     if a new z - variable enters
t th  column of � DHx  if surplus variable of constraint t enters 
t th  column of DHx  if slack variable of constraint t enters   

��

��
��

��
��

 (6.54) 

rz �
rzb

rzn

��

��
�� ��

��
, where (6.55) 

  

rzb �

�HzAbd* ,  if a new schedule enters
�Hzbb

* ,     if a new z - variable enters
tth  column of � Hz if surplus variable of constraint t enters 
tth  column of Hz if slack variable of constraint t enters   

��

��
��

��
��

 (6.56) 

and all elements of rzn  are zero except if a z -variable enters then the corresponding 
element is one (e.g. if zQ+1 enters then first element of rzn  is one). 

We need then consider the following cases: 

The weight of a key schedule becomes zero 

 The weight  of a key schedule becomes zero when the weights of basic schedules 
of unit i sum up to one, i.e., the implicit constraint   becomes binding.  

wiJ( i)

w 1

w 0

ij
j�J (i)
� �

Denote by Ti  the index set of  explicit basic schedules from treatment unit i (i.e., j�Ti 
means that  and j≠J(i)). Let ij � rwij  denote the corresponding element of r .  w

Let us first concider the case that the entering variable is not weight wij  in unit i. We 
note first that the weight w  cannot become zero if there are no explicit basic 
schedules in unit i (i.e., Ti  is empty). If  there are explicit basic schedules in unit i (i.e. Ti 
is not empty),  then the weights of the explicit basic schedules sums up to one if 

iJ( i)

wij � �
*rwij� �

j�Ti

� �1 , or (6.57) 

�
* � 1� wij

j�Ti

�
��

��
��

��

��
	� rwij

j�Ti

�  (6.58) 
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If the entering variable is weight wij   in unit i, the weights of the previous explicit basic 

schedules and the weight of the entering schedule sum up to one if 

wij � �
*rwij� �

j�Ti

� � �
*
� 1 , or (6.59) 

�
* � 1� wij

j�Ti

�
��

��
��

��

��
	� 1
 rwij

j�Ti

�
��

��
��

��

��
	� (6.60) 

If there were no explicit basic schedules in the unit of the entering schedule, then the 
above equation says simply that w  becomes zero  if �*=1. iJ( i)

An explicit basic schedules leaves 

The weight of an explicit basic schedule, w  , becomes zero, if ij rwij <0 and 

 w , or  (6.61) ij � �
*rwij � 0

�
*
� �wij rwij  (6.62) 

A basic z-variable leaves  

A basic z-variable    zbk  becomes zero if rzk � 0   and 

 zbk � �
*rzk � 0 , or (6.63) 

�
*
� �zbk rzk  (6.64) 

A nonbinding constraint becomes binding (a slack or surplus variable leaves) 

Let Zt denote the current value of a nonbinding constraint row t: 

Zt � a t �x � bt �z     , and (6.65) 

 ct � Zt � Ct . The new value of the row, denoted as Zt +, will be 

Zt� � Zt � � at �rx � bt � rz� �. (6.66) 

If a t �r x � bt �rz � 0 , the constraint will reach the lower bound ct  when � gets value 

�
*
� ct � Zt� � at � rx � bt �rz� �. (6.67) 

Similarly, if a t �r x � bt �rz � 0 , the constraint will reach the upper bound Ct  when � 
gets value 
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�
*
� Ct � Zt� � at �rx � bt � rz� �. (6.68) 

Note that the elements of rz  corresponding to nonbasic z-variables are zero except for 
an entering z-variable. The smallest value of  �* computed in Eqs. 6.58, 6.60, 6.62, 6.64, 
6.67, and 6.68 will be the new value of the entering variable (weight wij, z-variable, 
slack/surplus variable)  and it determines which is the leaving basic variable (a key 
variable, an explicit basic variable, a z-variable, or an implicit slack/surplus variable of 
a nonbinding constraint). Thereafter we need to update the problem description, i.e. the 
list of key schedules, the list of explicit basic schedules, and s,  D, Bbb, H,  w, z, x, vc, and 
vx.  

6.2.4 Updating step 

There are three different types of entering variables (treating slack and surplus 
variables as one category), and four different types of leaving variables. Thus there are 
twelve different combinations. The overall updating step can be combined by applying 
the following operations: 

The weight of a key schedule becomes zero 

The updating steps are simple, if weight w  enters the solution and the weight  w  of 

the key schedule of the same unit i leaves the solution, and there are no explicit basic 
schedules for the unit (i.e., w   will become 1 and w  was 1). We first update s ( := 

denotes assignmet operation): 

ij iJ( i)

ij iJ( i)

s:� s � xiJ (i)
� xij  (6.69) 

Then we set J(i) := j in the list of key schedules.  D, Bbb, H, vx , and vc  will remain the 
same. New w, z, and x can be  computed using Eqs. (6.29) and (6.19). 

If  becomes zero for a unit i having explicit basic schedules, then the updating can 

be done as follows. We select any  explicit basic schedule j' in unit i to become the new 
key schedule. Vector s is updated similarly as in (6.69). If there are other explicit basic 
schedules in the unit (in addition to the new key schedule), the columns of D  for other 
schedules in the unit are changed to correspond to the new key schedule. The inverse H 
of the basis can be updated accordingly by standard pivot operations. J(i) is set to be j'.  
Thereafter we proceed as if it where the column of D corresponding to the schedule j' 
that is leaving the basis. 

wiJ( i)
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 A column of the basis is changed 

A colum of the basis is changed when the entering variable is either w- or z-variable and 
the leaving variable is either w- or z-variable. If the leaving variable is the weight w ) 

of the key schedule (i.e. an implicit basic variable), it was described in the previous 
section what steps are taken to transform the situation to correspond the case that the 
leaving variable is wij of an explicit basic schedule.   

iJ( i)

If the leaving variable is wij for an explicit basic schedule, the corresponding column of 
D is dropped. If the leaving variable is a z-variable, then the corresponding column of 
Bbb is dropped. If the entering variable is a z-variable zk then the coefficient vector 

��

b1k

b2k

�

bRk

��

��

��
��
��
��
��

��

��

��
��
��
��
��

 

is included in Bbb. If the entering variable is w  then vector d  is joined to 

matrix D. Thereafter the inverse of the basis H is updated using standard pivot 
operations. For computing the inverse, the basis is treated as a single matrix whose  
column is changed. Logical separation between Bbb and D is done with link lists.  

ij
*
� xij

� xiJ( i)

 A row is added to the basis  

If  either a z- variable or wij of an explicit basic schedule is entering the basis and a new 
constraint t , 

ct � a t � x � bt �z � Ct  (6.70) 

 t>R, becomes active, then the dimension of the basis is inreased by one. Then 
coefficient rows at´  and bt´ that has been in the nonbasic (lower) part of A and B in 
(6.22) and (6.23) are moved to the basic (upper) part. If the entering variable is a z-
variable zk then the corresponding column vector of coefficients is included in Bbb. If 
the entering variable is w   then vector d  is joined to the matrix D. Thus 
the  basis matrix 

ij

D Bbb

* ij iJ( i)

A
� x � x

b� �  is updated by adding both a new row and a new column  

to it. The inverse basis H  can be updated using the matrix formula (CRC ... 1981) 

c ��d 
b A
��

��
�� ��

��

�1

�
h h ��d A�1

	hA�1b A�1 
 hA�1b ��d A�1

��

��
�� ��

��
, (6.71) ��

where 

h � 1 c � ��d A�1b� � (6.72) 
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A row is dropped from the basis  

If the implicit slack or surplus variable of constraint t is entering the solution (a binding 
constraint t becomes nonbinding), and either a z- variable or wij of an explicit basic 
schedule is leaving the basis, then we reduce the dimension of the basis by removing a 
column and a row. If wij  is leaving the solution  the corresponding column of the 
matrix D is dropped. If the leaving variable is a z-variable, then the corresponding 
column of Bbb is dropped. Thereafter the row t  is classified as a nonbinding both in 
matrix A and B.  The inverse of the basis is updated using the matrix formula (this can 
be derived from formulas given in CRC  ... 1981): 

If  
B c
��d e

��

��
�� ��

��

�1

�
X y
��z u

��

��
�� ��

��
 (6.73) 

then 
B�1

� X �
1
u y �z � (6.74) 

Two rows of the basis are changed 

If the implicit slack or surplus variable of constraint t is entering the solution (a binding 
constraint t becomes nonbinding), and the implicit slack or surplus variable of an other 
constraint is leaving the basis, then we interchange the status of the corresponding  
rows in matrices A and B. The inverse of the basis A D Bb bb� � is then obtained  by 

standard (row) pivot operations. 

Computations after changing the basis 

After updating s, Ab, D, Bbb and H, new values of w, z, x,  vc and vx are computed using 
Eqs. 6.29. 6.19, 6.42 and 6.41. Then JLP tries to improve the solution by entering a new z-
variable, a slack/surplus variable of a binding constraint or a schedule.  

6.3 Optimization Algorithm 

The preceeding chapters described briefly the mathematical basis of the generalized 
upper bound method as applied in JLP.  This chapter describes some properties of the 
implementation of the method. 

6.3.1 Minimization  

The algorithm is described above for the case where we want to maximize the objective 
function. If the problem is defined initially as a minimization problem, an equivalent 
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maximization problem is obtaint by changing the signs of coefficients on the objective 
row. The signs needs to be taken into account only in Eqs. 6.42, 6.41 and 6.48. 

6.3.2 Summary of the algorithm 

The following symbols are used in addition of symbols defined in Chapters 6.1 or 1.2: 
g   = the current (temporary) objective row (after finding feasible g=0) 
Ln  = list of nonbinding constraints 
L:=L U {t} means that t is added to the list L   

Finding a feasible solution 

JLP finds a feasible solution by maximizing or minimizing  each constraint row  until it 
will reach the feasible range [ct, Ct]. In the following it is summarized how the 
algorithm is used to find the feasible solution. 

Initialization: Get lower and upper bounds, and get for each unit the key schedule (for 
first problem with the data, key schedules are just different schedule numbers, 
thereafter key schedules are obtained from the previous solution), compute s (which is 
also the initial value of x) using key  schedules. 

0.  Set g:=0; Ln:={ } 

1. If g=r , then EXIT, FEASIBLE FOUND 
else 
 g:=g+1; Ln:= LnU {g}; 
If constraint g is satisfied go to 1 

2. Find an entering variable when row g is maximized (a ) or 
minimized ( 

g �x � bg � z � c
g

a �x � b � z �g g C
g
). If no variable can enter, then EXIT, PROBLEM 

INFEASIBLE 

3. Find the leaving variable, make one optimization step. 

4. If constraint g is satisfied, then go to 1, else go to 2  

The reason for adding constraint g into the list of nonbinding constraints in same time 
as we begin to maximize or minimize row g is to prevent the possibility that the row 
that is smaller than the lower bound (greater than the upper bound) and will become 
greater than the upper bound (smaller than the lower bound) in one optimization step. 
The algorithm became more efficient  than the basic version described above with the 
following modification. Each time a new constraint g  is started, all constraints g+1,....,r 
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are inspected if they are already in the feasible range, and satisfied constraints are 
added to the list of nonbinding constraints to prevent them to become unsatisfied when 
making constraint g feasible. Also such option to the algorithm was tested that 
temporary lower or upper bounds were used for constraints g+1,....,r to prevent them 
deviate more from their feasible ranges. No clear speed advantage was found, and this 
option is no more available.  

Finding optimal solution 

After finding a feasible solution, the optimum value for row g=0 can be found simply as 
follows: 

1. Find an entering variable. If no variable can enter,  then EXIT, SOLUTION. 
2. Find the leaving variable, make one optimization step. 
3. Go to step 1.  

There are different possible stategies for finding the next entering variable. JLP is using 
the following one. 

How JLP selects the entering variable 

A linear programming algorithm has found the solution, if the current solution cannot 
be increased by any entering variable. If several variables can enter, the solution will be 
found if any strategy is used to select the entering variable. Selection strategy affects of 
course the speed of the algorithm. JLP selects the entering variable initially and after 
each change of the basis according to the following priority order (i.e. the entering 
variable is selected from the highest possible category): 

i) z-variables 
ii) Slack or surplus variables 
iii) Weights of schedules.  

If several z-variables (slack/surplus variables) can enter, then the z-variable 
(slack/surplus variable) resulting in highest marginal change in the objective function 
is chosen. Units are visited in order when it is checked if a weight wij can enter into the 
solution. The values of all schedules in a unit are computed, and schedule with largest 
value is entered into the solution if its value is greater than the value of the key 
schedule.  If a weight wij  enters, then next time JLP computes prices of schedules it 
starts from unit i+1. If i+1 is greater than the number of units, then the first unit will be 
the next unit. If no schedule can enter in the unit where last weight entered the 
solution, then it is known that the optimum has been found.  
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If, after entering wij into the solution, JLP would return to the same unit i for calculating 
the prices of schedules, JLP would find the optimum for the current unit. In the 
language of decomposition algorithms: we would find the optimum for a subproblem. 
In test problems, it was found  slightly more efficient to go to the next unit i+1 after 
entering a weight wij . 

If there are no x-variables in the problem, then JLP just never reaches the phase iii) 
where prices of schedules are computed. 

6.4 Dual Analysis 

It may give insight to the problem if we analyze how the primal problem and the dual 
problem are related. This analysis will also indicate how to desribe marginal properties 
of the solution. 

6.4.1 Primal problem  

Let us first rewrite the 'standard' problem formulation by separating the lower bound 
and upper bound constraints:  

Max   z0 � a0 � x � b0 � z  (6.75) 

subject to: 

��

atk xk
k�1

p

� � btkzk
k�1

q

� � Ct , t �1,�,r  (6.76)    

��

� atk xk
k�1

p

� � btkzk
k�1

q

� � �ct , t �1,�,r  (6.77) 

��

xk � xk
ijwij � 0

j�1

ni

�
i�1

m

� , k � 1,�, p  (6.78)   

��

wij
j�1

ni

� � 1, i � 1,�,m   (6.79)   

wij � 0 for all i and j   (6.80) 

zk � 0 for k � 1,... ,q  (6.81) 
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6.4.2 Dual problem 

The dual problem is first defined using new symbols for the dual variables. It is then 
indicated at the end of the chapter how the dual variables are related to quantities 
computed when the primal problem is solved. 

 Let �t, k=1,...,r be the shadow prices for upper bound constraints (6.76), let �t, t=1,...,r 
be the shadow prices for lower bound constraints (6.77), let �k, k=1,...,p, be the shadow 
prices of constraints (6.78), and let �i, i=1,...m be the shadow prices of constraints (6.79). 
The dual problem is then: 

Min   Ct
t�1

r

� �t � ct
t�1

r

� �t � 0� k
k�1

p

� � � i
i�1

m

�  (6.82) 

or after dropping the third term (which is zero) 

Min Ct
t�1

r

� �t � ct
t�1

r

� �t � � i
i �1

m

�  (6.83) 

subject to: 

atk
t�1

r

� �t � �t� �� � k � a0k , k � 1,... , p  (6.84) 

btk �t � � t� �
t�1

r

� � b0k , k � 1,. .. ,q  (6.85) 

  
� xk

ij

k�1

p

� �
k
� �i � 0, for all i and j  (6.86) 

�t ≥ 0 for t=1,...,r (6.87) 

�t ≥ 0 for t=1,...,r (6.88) 

 Because (6.78) and (6.79) are equality constraints, the corresponding dual variables � 
and � are free variables. Because xk-variables are free in the primal problem, the 
corresponding constraints in the dual (6.84) are equality constraints.  

Optimization of the objective variable of the primal problem can be described as a 
process of finding a feasible solution for the dual problem. For instance, if the pricing 
rule (6.40) tells that a schedule j' in unit i could be included in the solution, this 
indicates that constraint (6.86) in the dual problem is not satisfied. After the schedule 
(precisely weight wij) enters the solution of the primal, the constraint is satisfied.   
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6.4.3 Relations between primal and dual problems 

Let us then consider what kind of relations there are between shadow prices and 
variables in the primal problem in the optimal solution. 

Shadow price of an x-variable 

For an original utility constraint t either the lower bound ct or the upper bound Ct is 
active. Thus either �t=0 or �t=0 or both are zero. Let us write that 

�t = �t – �t . (6.89) 

Then the shadow prices of x-variables can be obtained from (6.84) : 

� k � a0k � atk
t�1

r

� �t , k � 1,. .., p  (6.90) 

Shadow price of a unit 

Constraint (6.86) can be written as: 

  
� i � xk

ij

k�1

p

� � k , for all i and j  (6.91) 

Equality holds, if the weight wij in the primal problem is a basic variable (wij>0), i.e.,  
the shadow price of a unit is equal to the value of any basic schedule calculated using 
the shadow prices of the x-variables.  Multiplying with wij we get an equality for each 
wij : 

  
wij�i � wij xk

ij

k�1

p

� � k , for all i and j  (6.92) 

If add up over all all schedules in unit i, we get 

  
� i � xk

i

k�1

p

� � k , for all i  (6.93) 

where 

xk
i
� wij

j�1

ni

� xk
ij . (6.94) 

Thus the shadow price of a unit can be calculated using any of the basic schedules 
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Reduced cost of a nonbasic schedule 

The reduced cost for forcing schedule j in unit i into the solution is: 

� i � xk
ij

k�1

p

� � k . (6.95) 

Reduced cost for a nonbasic z-variable 

Reduced cost for a z-variable zk is obtained from (6.85) and (6.89) as: 

btk �t � � t� �
t�1

r

� � b0k � btk�t
t�1

r

� � b0 k , k � 1,..., q  (6.98) 

Objective function of the dual 

The objective function of the dual (6.83) is equal to: 

z0 = Ct
t�1

r

� �t � ct
t�1

r

� �t � � i
i �1

m

�   

    = 
  

Ct
t�1

r

� �t � ct
t�1

r

� �t � xk
i

k�1

p

� �
k

i �1

m

�                           (from 6.93) 

    = 
  

Ct
t�1

r

� �t � ct
t�1

r

� �t � xk
k�1

p

� �
k
                               (6.96) 

    = �
  

Ct
t�1

r
�t � ct

t�1

r

� �t � xk
k�1

p

� a0k � atk
t�1

r

� � t 
��

��
��

��

	�

�         (from 6.90, use then 6.89) 

z0 = xk
k�1

p

� a0k � �t Ct � atk xk
k�1

p

�
��

��
��

��

	�

�

t�1

r

� � � t atk xk
k�1

p

� � ct
��

��
��

��

	�

�

t�1

r

�  (6.97) 

If there are no z-variables in the problem, then for each t either �t  is zero (the upper 

bound constraint t is nonbinding) or C  is zero, and similarly, t � atk xk
k�1
�
p

� t  is zero (the 

lower bound constraint t is nonbinding) or   is zero. Thus if there are no z-

variables, the last two terms term in (6.97) are always zero. 

atk
k�1

p

� xk � ct



 JLP   123  

Computation of the shadow prices 

The nonzero values of �t, t=1,...,r, i.e., the shadow prices of utility constraints, are 
obtained from vector vc in Eq. (6.42). During the solution process vc  is always up to 
date. If �t>0, then �t = �t, and if �t<0, then �t = –�t. 

During the optimization, the shadow prices of x-variables are calculated from the 
shadow prices of utility constraints using (6.41). If there are linear combinations of x-
variables on the rows of the problem, these shadow prices are for the temporary x-
variables presenting the linear combinations. After solving the problem, the shadow 
prices of the original x-variables can be computed using (6.90).  

During the optimization process, values of schedules are computed using (6.40) when it 
is determined if a schedule should enter into the solution. The prices are not stored. 
After finding the solution, the shadow price of a unit i (precisely, the shadow price of 
the area constraint for unit i) can be computed applying (6.91, with equality sign) to the 
key schedule of the unit (or to the explicit basic schedules).  Thereafter the reduced cost 
of a nonbasic schedule can be computed with (6.95). 

Formula (6.48) used to check if a z-variable could enter into the solution is essentially 
the same as the reduced cost of a nonbasic z-variable given in (6.98). Values computed 
with (6.48) are not stored, beacause they are trivial to recompute with (6.98) after 
finding the solution. 

The fact that the optimization of the primal problem is essentially a r-dimensional 
problem (r is the number of the utility constraints) is reflected in the dual problem so 
that after knowing the shadow prices of the utility constraints, other dual variables can 
be directly computed from them.  

 

 

6.4.4 Cost of changing  values  of x-variables  

In this section we study the marginal changes in the objective function, if we add a 
constraint to the problem that requires that an x-variable xk gets a value slightly 
different from the value computed with the weights wij obtained from the optimal 
solution. Variable xk may or may not be present in the original problem.  

Assume that according to the optimal solution xk  has the value: 

xk   = �k (6.99) 
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Assume then that the problem is modified by adding a constraint 

xk   = �k + �� ������� 

or a constraint  

xk   = �k – �, (6.101) 

where � is a small positive constant. The constraint (6.100) is called constraint for increase 
and the relative change of the objective function (i.e. the change in z0 divided by �) is 
called the cost of increase. Similarly, constraint (6.101) is constraint for decrease , and  the 
corresponding relative change is cost of decrease. If xk  was not present in the problem, 
then we need to add also a constraint of type (6.78) that defines xk. This constraint is 
treated implicitly as before. The changes in the objective function can be analyzed as 
follows. 

If � is small enough, then a solution satisfying the new additional constraint (6.100) or 
(6.101) can be reached in one step from the current optimal solution by  entering a new 
w-,  z- or slack/surplus  variable into the basis. As the number of constraints is 
increased by one, no variable is leaving the basis. The optimal entering variable can be 
chosen by applying the same formulas that are used to determine the entering variable 
during the optimization (in this discussion 'entering variable' refers to a variable that 
could be entered into the basis, actually no computations are made to change the basis). 
If a potential entering variable y gets value �, (�>0) then  the change in the objective 
function is 	�y)
, where 	�y) is computed with Eq. (6.40)  if y is  a w-variable (i.e. 

), and with Eq (6.48) if y is a z-variable  or a slack/surplus variable (i.e. 
, or �= ± an element of vc) Because we start from the optimal solution 

with less restrictive constraints, ��y) is always nonpositive (when the objective function 
is maximized).  

� � vx �d
� � b0

*
� v

*

*

v � � a �D b �

c � bb

The corresponding changes in the variable xk can be analyzed using the same formulas 
treating xk as the objective function. When computing the price vector 

c 0 b� �

xk
ij
� xk

iJ(i)
b

H �D using Eq. (6.42) we note that a  is a vector with elements 
 and b  is zero. The change in xk can be expressed as �(y)���where �(y)�can be 

zero, positive or negative.  

0

The constraint for increase (6.100) will be satified if �(y)>0 and 

�(y)�=�,    or (6.102) 

�=�/�(y). (6.103) 

The objective function will change by the amount: 
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��y)
= � � (y) � (y) . (6.104) 

Thus the optimal entering variable is such that –� (y) � (y)  is as small as possible. Ratio 
–� (y) � (y)  is the marginal cost of  forcing xk to  increase. 

Similarly, the optimal entering variable for the constraint for increase (6.101) is such 
that �(y)<0 and  � (y) � (y)  is as small as possible. Ratio � (y) � (y)  is the marginal cost 
of  forcing xk to  decrease.  

If the optimal solution is not unique, then it is possible that cost of decrease or decrease 
is zero (i.e., ��y) may be zero for an entering variable y for which �(y)  is nonzero). If  �k 
is the largest value that xk can have, then �(y) is never greater than zero, and the 
problem with the additional constraint is infeasible. Thus the cost of increase is not 
defined (or can defined to be infinite). Similarly, �k  may be the smallest value xk  can 
have. The JLP printout 'INF' can thus interpreted to mean that the problem with the 
corresponding additional constraint is infeasible  or that the cost is infinite. Generally, 
the cost of increase is different from the cost of decrease. For instance, if the net present 
is maximized, then the requirement to decrease cuttings in the first period costs usually 
more than the requirement to increase cuttings.  

The cost of increase and decrease can be computed also for domain specific x-variables 
(even if the domains were not used in the problem). If the entering variable y is a z- or 
slack/surplus variable, then ratio � (y) � (y)  is the same in each domain. 

The shadow price of an x-variable xk tells what is the marginal change of the objective 
function, if the problem remains the same and we get an extra unit of xk. If the shadow 
price of an x-variable is zero (i.e. the x-variable is present only in a nonbinding 
constraint) or an x-variable does not appear in the problem, then a marginal change in 
the x-variable does not cause any change in the objective function. The cost of change 
gives a different view of the marginal properties of the solution. The main difference is 
that the shadow prices are computed assuming that only the right hand sides of 
constraints change, while when the cost of change is computed, a constraint is added. 

The cost of changing the value of a nonbasic x-variable is easier to interpret than the 
cost of change of a basic x-variable (a basic x-variable is an x-variable present on the 
objective row or in a binding utility constraint). For a basic x-variable, the additional 
constraint for change may intervene with the previous constraints in a way that may be 
not seen directly. The mathematical connections between shadow prices and costs of 
changing the values of x-variables will not be analyzed further in this report. 



126   Linear Programming Algorithm Part  6

6.5 Domains 

Domains are not assumed to have any specific structure. For instance domains can 
overlap in any manner. Thus it did not seem to be possible to apply decomposition 
techniques to take advantage of the domain structure in optimization algorithm as 
such. The domains are taken into account in the computation process as follows. 

All x-variables are stored in one matrix without domain information. When the 
problem and domains are defined in a problem paragraph, JLP classifies treatment 
units into domain combinations. All units in a domain combination belong exactly to 
the same domains (a unit can belong to any number of domains). A logical vector is 
created for each domain combination telling what constraints apply in the domain 
combination. When JLP is dealing with a unit, the loops go over the constraints that 
apply in that domain combination.  

Domain structure for constraints can be taken into account using any linear 
programming  program by defining  coefficients  so that they are zero outside the 
domain. This would lead to a system where the same non-zero numbers are stored 
several times and many zeros are also stored. JLP stores coefficients  only once and 
does not store extra zeros. 

xk
ij

ijxk
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Concluding Remarks: Future Developments    

It was a very difficult to decide at what point to stop the development of the JLP 
program and make a first version for a general use. There are several possible 
extensions, and some of them would be quite easy to implement. It is best that users 
decide what extensions are included in future versions of the program. For instance, 
following additions might interest some users: 

a) Objective function could be nonlinear with respect to the x-variables. This would 
quite easy to implement. Other nonlinear properties would require more work. 

b) Now all transformation definitions are cleared after transformations are computed 
(except dtran which are computed always in place). If definitions could be saved, it 
would be possible to have parameters in definitions and change their values with 
constant command without needing to retype (or recall from include file) 
transformation definitions. 

c)  It is not currently possible to merge several data sets saved in JLP-format. Is there 
need for it? 

d) It is not currently possible to edit afterwards problem paragraph or transformation 
definitions. This is not a great shortage in modern computer environments where one 
can switch to an other editor program and then return to JLP and get edited commands 
using include command. 

e) JLP algorithm is built so that dimension of the basis (the number of binding 
constraints) can change any time. Thus it would be easy to add to JLP the property that 
the user could add or remove constraints from the previous problem, and the 
optimization would start from the previous solution. Now the algorithm is utilizing the 
previous solution only by using the set of the key schedules of the previous solution. 
An earlier version of the program included these capabilities, and it was found that in 
small problems no significant improvement in speed was obtained. The situation may 
be different in large problems. 
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List of Commands 

Current commands (significant part is underlineed): 

 batch buff buflevel cdata cform
 const ctran cvar do dtran
 dupl end enddo feasible help
 helpfile include init keepc keepx
 make mrep outfile outlevel own1
 own2 ownread parin parout path
 pause printlevel problem read recall
 report save sched show solve
 split system time title unsave
 values write xdata xform xtran
 xvar  

Note that the modules of the Reference Manual (Part 3) are listed at the beginning of it. 
 

Index 

Valid JLP commands are underlined. 
 

*PAR* error message 102 
Basic 

explicit basic schedules 110 
implicit basic schedules 109 
z-variable 20 

Basis 
reinversion 53 
working 109; 111 

batch mode 24; 27; 55; 64; 102 
Buffer 

interface 55 
buflevel 55 
buff 99 
see also Own:interface 

text 91 
Building JLP 74 
C-variables 33; 70; 90 

cdata 28; 56 
cform 28; 56 
ctran 28; 57 
cvar 28; 57 
keepc 28; 34; 61 
"ns" 71 
"unit" 71 

Command 
line 14; 56 

comment 14 
continuation 14 

option 14 
syntax 14 

constants 28; 32; 39; 57; 70 
Constraints 

area 11 
defining x-variables 10 
utility 10; 41 

Cost 
of decreasing x 50; 51; 127 
of increasing x 50; 127 
reduced, see: Reduced cost 

D-variables 32; 33; 70 
"data" 32; 71 
dtran 28; 58 

Dantzig 107; 109 
Data 

reading 28 
transforming 29 
variables 30 

Decision variables 11 
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Degeneracy 53 
linearly dependent constraints 103 
lower bound=minimum 104 

Directory 58; 64 
do loop 58 
Domains 41; 58 

computation 129 
domain combination 129 
domain variables 12 
mixing 43 

Dual 122; 123 
objective function of 125 

duplicating schedules 29; 59 
Dykstra 8; 11 
end 59 
end do 59 
Entering variable 111 
feasible 44; 60 

technique for finding 120 
Files 60 

in the package 
jlp.hlp 25; 55 
jlp.par 76 
readme.jlp 74 
source (.src) files 74 

output file 26 
version 81 

Goal programming 18 
Headers of subroutines 87 
help 25; 60 

help file 25 
helpfile 25; 60 

If ... then  structures 38 
include 24; 61 
INF -  in output 51 
init 61 
Integer approximation 44; 61; 67 
JLP format 66 
JLP subroutines 82 
jmake precompiler 74-87 
Key schedule 109 
Kilkki 8; 11 
Lappi 8; 50 
Leaving variable 114 
list a file 25; 61 
Logical operators 37 
Loop 

in solving problems 58 

in transformations 38; 88 
make -compute new variables 29; 62 
make JLP, see JMAKE 
MELA 15; 62 
Model I 11 
needs: 83; 84; 87 
Objective see: problem 
Objective function 

of the dual 125 
one-x formulation 107; 112 
Output 26 

file 26 
outfile 26; 63 
outlevel 26; 63 
printlevel 26; 64 
see also: Files,Printing,write 

Own (user defined) 
buffer output 100 
commands 63; 101 
data input 94 
functions in transformations 37; 93 
interface 98-101 
own1 63 
own2 63 
ownread 63 
report writer 

for schedules 97 
see also: Report writer 

RHS generation 94 
subroutines see: Subroutines 
terminal input 100 
variables managed with JMAKE 83 

Paragraph 15 
Parameters 

of JMAKE 75; 76 
of optimization 

parin 52; 63 
parout 54; 64 

path 14; 28; 64 
pause 27; 64 
Printing 

solution 44; 67 
rows 44 
schedules 45; 67 
weights 45 

subroutines 92 
problem 41 

constraints 41 
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definition 64 
domains 41 
objective 42 
RHS 42 

see also: solve,  Own:RHS 
Random number 37 
read 65 
recall 45; 65 
Reduced cost 

of a schedule 52; 125 
of z-variable 51; 113; 125 
see also: Shadow price 

Rejecting schedules 34; 65 
Report writer 

mrep 62 
repo 66 
writing own 96-98 

RHS 
defining, see: problem 
selecting, see: solve, Own:RHS 

Rounding errors 103 
save 28; 39; 66 

format of files 66 
unsave 70 

sched 45; 67 
Shadow price 

computation 126 
of schedule 52; 125 
of unit 51; 124 
of utility constraint 47 
of x-variable 48; 124 

show 44; 67 
see also Printing 

Siitonen 15; 62 
Solution, printing see: Printing 
solve 43; 68 

find a feasible 44 
splitting a unit 29; 68 
Steuer 8 
Subroutines 

for data input 95 
for printing 92 
for string manipulation 91 
for text buffers 91 
for timing 82 
for transformations 92 
for variable lists 89 
for variable names 89 

headers 87 
Swap values of variables 37 
system - sending command to 69 
System manager 9 
Timing 27; 69 

comparisons 53 
subroutine 82 

title 69 
Tolerance 53; 104 
Transformations 35; 69 

arithmetic operations 36 
clearing 36 
computation scheme 30 

when reading 28 
ctran - see: C-variables 
defining domains - see:Domains 
dtran  -see: D-variables 
logical operations 37 
loops 38 
subroutines for 92 
xtran -see X-variables 

Troubleshooting 53; 102 
UNIX 81 
unsave 70 
Utility 11 

constraints, see: Constraints 
variables 11 

values 70 
Variables 70 

c- see: C-variables 
d- see: D-variables 
data- see: constants,D-,C-,and X- 
decision 11 
domain 12 
key 108 
slack and surplus 113 
special 89 
variable list 31; 88 
w- 11 
x-  see: x-variables 
z- 11 

VMS 69; 77; 78; 81 
Weight see: Variables:w- 
write data to disk 71 

see also save 
x-variables 11; 34; 70; 90 

aggregated 11 
keepx 28; 35; 61 
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reject 34 
"s" 71 
xdata 28; 72 
xform 28; 72 
xtran 28; 72 
xvar 28; 73 
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