Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Juha Lappi
Reetta Lempinen

J -users' guide 2.1

Version 2.1 2014

Finnish Forest Research Institute
Suonenjoki Unit

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Lappi, Juha and Lempinen, Reetta. 2014. J-users' guide 2.1. Finnish Forest Research
Institute, Suonenjoki Unit 130 pp.

The J users' guide is published only electronically and is made available for public
access in the Internet.

Keywords: forestry analysis, linear programming, data analysis, matrix computations,
simulation, optimization

Authors' addresses: Juha Lappi, Finnish Forest Research Institute, Suonenjoki Unit,
Juntintie 154, FI-77600 SUONENJOKI, Finland

Reetta Lempinen, Finnish Forest Research Institute, Joensuu Unit, Yliopistokatu 6,
FI1-80100 JOENSUU, Finland

Authors’ email: juha.lappi@metla.fi, reetta.lempinen@metla.fi

Publisher: The Finnish Forest Research Institute Metla, Jokiniemenkuja 1, BOX 18
FI-01301 VANTAA, Finland
Metla project number: 3002

(URL.: http://mela2.metla.fi/mela/j/manuals/J2.1_userguide.pdf)
J homepage: http://mela2.metla.fi/mela/j/index.html
Copyright 2014 Finnish Forest Research Institute. All Rights Reserved.

The J users' guide is provided without warranty of any kind. It may include
inaccuracies or errors. The author may make improvements and/or changes in the
products at any time. These changes will be incorporated in the new editions of the J
users' guide.

The distribution versions of J software may deviate in some details from the general
documentation presented in the J users' guide.

The names of companies and their products appearing in the J users' guide are
trademarks or registered trademarks of their respective holders.

Conditions of use of the software

There are two license types for the J software. The use of J software is free for
research and teaching purposes (academic license). To use J for commercial or
production purposes or for practical forest planning requires commercial license with
annual license fee.

The software is available from 07.08.2014 at the web page
http://mela2.metla.fi/mela/j/index.html which contains the conditions of use, user
registration, and download page for registered users.

mailto:juha.lappi@metla.fi
mailto:reetta.lempinen@metla.fi
http://mela2.metla.fi/mela/j/index.html
http://mela2.metla.fi/mela/j/index.html

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Changes from previous versions
Changes from version 2.0 to version 2.1.

Domains can be defined also for constraints in optimization problems including
factory variables.

Function jlp has new options (zmatrix—>, max—>,min—>,rhs—>,rth—>) for the
definition of large problems including only z-variables (ordinary linear programming
problems). There are also several new objects for accessing the solution of a problem.
Some naming conventions of generated objects have been changed. See Chapter
11.10 Objects for the JLP solution.

In function xx £ the order of output fields has changed.
The lines of a text object can be accessed, see Chapter 3.2.8.
Function delete can now be used to delete files in addition to deleting objects.

Function print has new option for redirecting output into a file.

If amat is a matrix, then all elements can be se with simply assignment statement, e.g.
amat=0. Previously such assignment statement made amat a real variable and
substituted the value to this variable.

New matrix function: elementprod.

Object names can contain special symbols (e.g. +-*/ ()) if they are closed within ‘[’
and and ‘]°.

When making a data object from a file, nobs-option can be used to limit the number
of records read, and new automatic variables Record and subrecord (if option
subread IS present) get the number of input record which can be used when rejecting
observations.

The variable resu1t (which is the output variable if no output is given) is not put into
the list of output variables of the transformation. This has effect e.g. in the simulator.

Continuation line cannot start with ‘*’ or ¢!’

The documentation is improved. Several bugs are corrected, and testing of user made
errors is improved, so that user errors do not cause crash so easily.

Changes from version 1.0.3 to version 2.0.

J software is able to solve factory problems. In a factory problem, the transportations
costs of different timber assortments at specified time periods and capacities of
factories at the same time periods are included in the problem definition. For instance,
the net present value can be maximized subject to capacity constraints and
sustainability constraints. See j1p function for more details.

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Multiple input files can be defined in a data function call.

Migration to a new IDE and operating system. J is now compiled with Intel(R) Visual
Fortran Composer XE 2013 under Windows 7.

Changes in older versions can be found in Version 1.0.3 manual, which is available at
the web page http://mela2.metla.fi/mela/j/manuals/J1.0.3_userguide.pdf.

http://mela2.metla.fi/mela/j/manuals/J1.0.3_userguide.pdf

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Table of contents

Conditions of use OF the SOTIWAIEcuiiiiiiic e 2
Changes from PreVIOUS VEISIONSccueiuiiieieieieeieiesesestestesieesaeeessesteseessessessessesssessessessessessensens 3
TaDIE OF CONMTENES ...t 5
INEFOTUCTION ...ttt bbbt bbbt b bbbt bbbt b bbbt b e b 15
1.1 SYSIEM FEQUITEIMENTS ...eviiiiiitiieetiite ettt bbbt bbbt bt e 15
L2 S UP OF Jaooiceee et ra e e nre e 16
1.3 DUNNQG the FIFST USE ..vveiiiiiie ettt e te et e e e st e e te e aeenneenee s 16
LA EXIING J oo eeeeeee e s eeeeeesee s s e s s s s ee s e e s s e et 17
1.5 Manual CONVENTIONSocuiiiiiitiieiisie ettt e bbbt 17
2 J OB ECES. ..ttt h bbb R R bbbt bbbt bt b e 18
8 R © o] 1= ox =2 1= TR 18
2.2 CopYiNg ODJECE: @ZD c.uviiii e 18
2.3 Deleting objects: Aelete().....coeiiiriiieieeie e 18
N O] 1-To1 1Y 1T ST U U SPORTSPRTPRPPRPPPPRIN 19

Real variables and CONSANTScociiiereiiiine e 19

Character constants and variables............cccovreiiiiiiicc e 20

TEXEODJECE .ttt 20

LOGICAI VAIUBS ..o e 20

(@] o] LT B 111 SRS UR PR UUOPPRRN 20

MaLrICES AN VECTOTS ...ttt 21

TransfOrMAatioN SEL.........ooviiiiiiirec s 21

SIMUIBLOT <.ttt st eb b 21

DALA SBLviviii it 21

Problem definition ODJECT.........ccoi i 21

1o U= 0]] 1o PSS 21

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

FUNCEION ODJECTS.....eiiiiiitiieiete b 22

Storage for Variables ..o 22

BIEMALIIX ..t 22

THACE SBL...cuiiiii i 22
2.5 Objects created automatically and default NAMES.........cccoviiriiiiieisc e 22
3 Command INPUE AN OULPUL........cueeeiiiririeieie ettt eb b b nr et nn e ene e 23
3.1 Inputline and iNPUL Paragraph.........cccveueiieiiee i re e 24
T2 10110 1 o1 (oo = o T 4T T TS 25
3.2.1 Addresses in inpUt Programmingccoeoeeiereeieneieseseese e 25
3.2.2 Changing "..." SEQUEIICESuerreerieerreerreareareasresseesseesseessesresnessesssessseasseasesnresseesneenes 25
3.2.3 Input programming commands and control StrUCtUreS............cccevuevieevivevecre e 26

SINCH(FHET[,FTOM=>]) e e 26

B =] U TSP UPPPRRIRt 27

;AO(i,Start, 1aSt[,STEP]) vovverveereeie ettt 27

TENAUO ..o 27

L GO PO 28

TIF(VAIUB)TNEN <o e 28

1eISEIT(VAIUB)TNEN L. 28

TENAIT e 28

Mo [o] (01 (- To |) H OSSP S PP 28
3.2.4 Utilizing object lists: @list and @Iist(elem)coccvreiiiiiiiiri e 29
3.2.5 Shortcuts for implicit object lists: X1...X5, 2%X] ..ovvveriieriierreiesee e 29
328 KEY SNOMCULS ...ttt ettt ettt et sn e ene e 30
3.2.7 Defining a text object with text function and using it in ;incl.........ccccoovvviievivnivinenn, 30

TEEXE() +vevereete ettt bbb et b e ettt er e b 31
3.2.8 ACCeSSING teXT ODJECT HNES....cviitiiiiiieiieee e e 31
3.3 Immediate operations Starting With ';'..........coooiii i 31
B0 0o a1 (] TTaTo 0TV o LU 31
4 JEFANSTOIMALIONS ...ttt 32

4.1 Structure of general J fFUNCHIONScoiiiiiiiee e 32

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

4.2 COMIMON OPLIONS ..ottt ettt ettt ettt sb bbbt b et nb et b et
I e 33
GAEA= . 34
TrANS= .o 34
BIT= > ettt 34
4.3 Jfunction for defining transformation Sets: trans()ccccovereirereiinineseeeeee
4.4 Executing a transformation set explicitly: call().......ccccooevveiiiiiiiiiecc e,
4.5 Using a transformation set as a function: result()cccocvevveieiiiecic s,
4.6 Using a transformation set as a function with an argument: value()c.ccovevvvrvinnene
5 ATItMELIC COMPULALIONS ...ttt bbbt e
5.1.1 Standard NUMETIC EXPIESSIONSc.erveiiiririeriiteriereste e este sttt sr et sbe b eresreeere e
5.1.2 Logical and relational EXPreSSIONS.........coieviiriiiiirieise ettt
5.1.3 ArthmetiC FUNCHIONSooveiiiicii e
sqrt, exp, 100, 10010, @DScoiiiieiiiecieiese e s 39
Real t0 INtEYEr CONVEISIONoviiiiiiiciiiie et 39
TN, IMBX 1.t e e bbb 39
] o PSS 40
AOt(C1,...,CNLX L,y XT1) ettt 40
which(cond1,valuel,...,condn,valuen[,valuedef])cccccervimriniininiiniie 40
Trigonometric functions, argument in radianS.........cccccevvevierieie s 40
Trigonometric functions, arguments iN degreesS.cccvevererererere s 40
Inverse trigonometric functions, result in radians...........ccccevevvivvienineceerese e, 40
Inverse trigonometric functions, result in degreesccocevvvereivenenenecnenene 40
HYPErbOolC FUNCLIONS ... e 40
5.1.4 Probability diStriDULIONS..........ooiiiiiii e
PAF(X[,MEANT[,SUT) - vttt 41
CAf(X[,MEAN][,SA]) +.vvveerrereereie ettt nren 41
5.1.5 RanNdOmM NUMDEISc.viiiiiiicii et

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

FANN() + vttt ettt b bbb bR bbbt b et b et 41
5.1.6 Special NUMETIC FUNCLIONS..........ciiiiiiiiiiicis e
npv(interest,incomel,...,incomen,timel,...,tiMeN)..........ccevvererierinniee e 41
5.1.7 LISt arithmeLiCS .vevveieiiieeiiseese s
5.2 DEIIVALIVES ..ottt b bbb bbbt et b e n e
6 MBELFIX COMPUEBLIONS ...ttt bbbttt bbbt nn
6.1 Defining a MatrixX: MAtFiX() coveoveiieiieii i e e sre e e e sreenas
6.1.1 MALriX FUNCLIONS. ..o
setmatrix(matrix,value [,diagonal->])........ccccoriiriniiiniii s 44
(8] ettt bbbttt 44
A= ST -) I TSP T S PRPTSOPR PO 44
dotproduct(a,b[,limitL][,lIMit2])ccoverieiieieece e 44
elementsum(a[, limitL][,limit2][,row->][,column->])cccccovevriiviieieieecre 45
elementprod(@,0) . ..o 45
submatrix(a[,row->][,column->]) ..ccocoviiiiiiiccec 45
A1 E0 1T) ISR 46
4ot0] 11) USSR 46
[EN(ALANY->]) cvveverietiiiei et 46
index(Val, a[,anY=>]) ..ceoviiiiiciiic e 46
SOrt(a,KeY->(KeYLLKEY2])) . eeeeierieitirieeeeie ettt e 47
7 Transformation CONEIOI SETUCTUIESeviiriiiiiiee e
75 | S

IF() vttt ettt 48
TF (NI e b 48
BISEIT()ENEN ... e 48
Bl s 48

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

8

9

T2 LLOOPS ottt Rt
dO(i,StArt,eNAL,SEPT) .. veverereererieieet et 48
BNAUO 1.ttt 48
(0o [OSSR 49
BXTEAO vttt 49
7.3 Return from a transformation SEt............ccoviiiiiiiiiiise e
FEUIUIM .ot e 49
(o S 11 2§ - 4) TP PR PR PSPPI 49
7.4 Using addresses in transformation SELS...........cciviiriiiirieienineieee e
7.4.1 Address in transformation SEL.........cociviiieiiiiriiie e
[0 To1 0] (=10 [0 [(=133 SRR 50
JUMP(AUAIESS') ettt e st et e e aeaneesreeanees 50
DACK. ...ttt 50
TO-TUNCLIONS ...t bbbt b bbbt b et bbbt b bbbt be s
print(argl,...,argn[,maxlines->][,data->][,row->][,file->])......c.ccccroriniirinnncnn. 50
read(file,format[,0bj 1,...,0DJN]) c.eoviriiiieiieieee e 51
write(file,format,vall,...,valn[,tab->]) ! Case[1/5]......ccccccvimriiiniiiiiiiiiieiiesiens 51
write(file,'t',t1,vall,t2,val2,...,tn,valn[,tab->]) ! case[2/5]......cccceevrvmrrrerernnnn. 52
write(file,'w',w1,vall,w2,val2,...,wn,valn[,tab->]) ! case[3/5].....cc.ccccerrrrrurn. 52
write(file,text_object) ! CaSe[4/5]...c.cuiiriiiiiiere e 53
Writing into $BUffer 1 CaSE[5/5] ..e.vvvivriiriierieeei s 53
ClOSE(TIIR) ..ttt 54
EXISE(FIIE) ..ttt 54
(012] (=T] =) RS U U RUR PRSP 54
ask(varl,...,varn[,default->][,q->1[,eXit->])....cccovireiiiiiiiee 54
askc(chvarl, ... ,chvarn[,default->][,q->][,eXit->]) cvoovoreeveiire e 55
DAL SBLS ...ttt

10
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

9.1 Creating a data ODJECE: dAA(). ..viverreerrerreieereeiee e 55
9.2 Modifying an existing data set: editdatal)ccoerererireiiiieiere e 58
9.3 Linking hierarchical data: HNKAAta()cccovevveveieiiiiiieeie e 59
9.4 Combining two observations in same class: CroSSEA()covvvverererivriveieeriere s sese e 59
9.5 Utility fuNCtions fOr data SELScoveiiiiieiieiecice e 60
9.5.1 Extracting values of class variables: ValUeS()ccooeoveireiiiiiiiiiicsc e 60
9.5.2 Number of 0bServations: NODS().......coviireiiiicii e 60
9.5.3 Getting an observation from a data set: getobS()ceovvvreiiiiniiiii e, 61

LS I B T - =] o] o =Tt TR 61
10 SEALISICAl TUNCLIONS ...t ene e 62
10.1 BaSiC StatiStiCS: SLAL() .evvvevveeieereerieeiiesie s st et e e e e e s e st e et nre e e ae e 62
10.2 COVArianCe MALriX: COV() ..veeirerieririerieienterieie sttt sttt sbe ettt sb et sb e bbb e 64
10.3 Correlation MatriX: COMT() ..oviiieirerieeie et 64
10.4 Classifying data: ClassSify() ...covveiiiciiiice e 65
10.5 Linear regreSSION: FEOI() .oueiiveiieeie et eeeette st e st esteestesste s estaesteesteesteaseesnresneesseesreesaeeaenneeas 66
10.5.1 Computing the regression fUNCLioN: regr().......cooeerereiinieneieserese e 66
10.5.2 Using the regression object: value(),coef(),se(),mse(),rmse(),r2(), nobs(), len() 67
10.6 SMOoOthing SPHNE: SMOOTN() .oveveiieiieiiie e 68
10.6.1 Smoothing spline directly from data...........ccccoeriiiiiniii e 68
10.6.2 Smoothing spline from classified data.........ccocooeiiieniiiinc e 69

11 Linear programming (JLP fUNCLIONS)c.couiiiiiiiiirieesees e 70
11.1 Optimization problem WithOUt fACIOFIES........c.eiiririiiiiiee e 70
11.2 Optimization problem including faCtOriescooviiiiriiiii e 73
11.3 SOIULION @IGOTTERM ...t 75
114 JfUNCLiONS FElAted £0 JLP ..c.ocviieiiiieiee et 75
11.5 Problem definition: problem()ooe oo 75
11.6 JLP problem definition ODJECTc.oiiiiiiiee e 77
11.7 Solving @ Problem: JIP() coeerereieeeeieeeeec e 78
11.8 Solving a large problem with z-variables: JIP() .cccoooveveririre e 81

109 JLP OULPUL ettt h e b e et e e mb e e ar e eabenbeenbeenbeenbe e e 82

11

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

12

11.10 Objects for the JLP SOIULIONcooiiiiiieiei it
11.11 Inquiry functions for the JLP SOIULIONcooeiiiriiiiccse e
=T o) T OSSN 87
UNTE(T) vttt bbbt 87
SCREACUMI(I) +.evetie et 87
SCREUAW(I) vttt 87
(VLT T |1) TS SRR 88
PAFTWEIGNTS() c.vvevveeeie et 88
PAFTUNTE(T) «. et eve ettt bbb 88
PArSCREACUM(T) ...eveieiiieeieeiecte e 88
PANSCREAW(T) v.veveieereeie et 88
[EE V=T To o1) USSR 88
PrICEYOUNIT(IUNIL) ...vveeie ettt sr e te e reeeneas 89
weight%schedcum(sched[,iNteger->])ccoceverviereiiiiecese e 89
Price%schedCuM(SCRE)cooi i e 89
price%schedW(iUuNIt,SChEd)c.ccvi i 89
weight%schedw(iunit,sched[,integer->]1)ccccvvveiieiiiie e 89
INtEQErSCEAW(IUNIL) ...t e 90
INtegersChedCuM(IUNIL)coviiic e 90
XKE(FIIE) 1.t 90
1112 JLP @XAMPIES. ...ttt bbbttt sb b bbbt e bbb b eneas
SIMUIBLOT ...ttt bt s e bt st bt s et et e st e st et e nbe s e ebenbe e ebe e
12,1 Defining @ SIMUIBLOTcviiiiiiie ettt
12.1.1 Simulator definition: SIMUIALOI()ceieriiee e
12.1.2 Special functions used in & SIMUIALOL..........cccoiiiiiiiiiiee e
next(nodel,...,NOACIMN)ociiiieiieieeie e 97
branch(nodel,...,NOACM)cccuiiiiririiiiicsiesee et nreens 97

12
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

[OBALIEES() vttt 97
12.2 Using a Simulator: SIMUIALE () ..ovoerieiieieiieeese e 98
13 o T Tl I 0 U =TSRSS 100
S Yor= LT 0] o) ol o] (0] Y (IS 101
Drawing a function: draW()..........courereireniineneesese e 101
Drawing line through points: drawling().........cocooeoreneiieneesee e 103
Drawing class information: drawclass()ccccvevveiiiienieiieieece e 104
14 Stem curves, splines and VOIUME FUNCLIONSccceiiiiii e 105
T4 L SEEM SPIHNES. ...ttt bbbttt bt bbbt 106
=stemspline(hl,...,hn,d1,...,dn [,S0rt->][,print->])....cccccceniviivnininiiniinirininne 106
=stempolar(stemspline,angle[,0rigo->1[,err->]) ...cccccovvereriiiereieiereie e 106
=laasvol(species,dbh[,dB][,N]) ..cveovvereeiiies e 107
=laaspoly(species,dbh [,dB],0)cceeiiiiiiieciee e 107
=tautspline(x1,...,xn,y1,...,yn [,par->][,Sort->]1[,print->])ccccoverrviriininenne 107
15 ULTHEY FUNCLIONS ...t bbbt bbbt b 108
15,1 WOTKING QIFECLOTY ..c.vveieeiieecie ettt et et et e be e be e e e sneesreenas 108
K L0 1T L) USSR 108
SELAIN(CNAIVAD) ... 108
152 TIiMING FUNCLIONS ...ttt 108
SECONDAS() + ettt ettt ettt b et b ettt b bbbt a et b b bbbt eae e e b nre s 108
(o010 TR UR USSP 108
15,3 LISt FUNCLIONSoviitiieiieiire bbbttt ne e 108
=1iSt(OB] 1, .. OBJAL,MASK=>] .ovveeeeeereeeeeeeeeee e eeseeeeeseeeessee e s eesseeees e eeesee e 108
=merge(0bj1,...,0011) ..oviiiiiiiiiii i 109
=differenCe(liStL,IiSt2) ...c.oooveieiiiee e 109
index(0hject, liSt[,any=>1) ..vccveererece e 109

Lo TS 012>) S S 110

13

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

15.4 Getting value from an object: value(object,Xvalue) ..., 110
15.4.1 Interpolating a regular matrix: Value(matrixX,X).........cccrerrerernienenseneeeseeee e 111
15.4.2 Interpolating a classify-matrix: value(cl_matrix,Xvalue)cceceererenenivniencinnnn. 111
15.4.3 Using a spline: value(Splineg,XValue)ccceoirireiinineieiescese e 112
15.4.4 Getting values from a transformation set: value(tr_set,xvalue)c.ccccecvrerirnnnen. 112
15.4.5 Gettting value of a list variable..........cccccoveiiiiiiicicc s 113

15.5 Inverse function: valuex(object,yValue)ccceviiriiiiiiiireseee e 113
15.5.1 Height of diameter using stemspline: valuex(stempline,diameter)c.ccocevveennen. 113

=valuex(stemspling,diameter)cccvevereiere e 113

15.6 Interpolating points: INtErPOIAte()cceeiveieeieiie e 114

interpolate(X0,X1[,X2],YO0,YLLY2],X] «eoververirriieiinieici s 114

15.7 Integrating @ FUNCLIONooviiiiiiiiiie e 114

15.7.1 Integrating stem curve to get Stem VOIUMES..........ccvvvevieieciecc e 114
=integrate(stem_spline,n1,n2) ... 114

158 BILTUNCHIONS ..ottt b et 114
setbits(ind, Ditl,...,DItN) ...ccoiiiiiieeee e 115
clearbits(ind,bit],...,DItN) ..c.eiiiuiiiiiiiiie s 115
ZQEthIt(ING,DIE) .. 115
=getbitch(ind[,From][,10]) «.eoverveeieiee e 116
=bitmatrix (nrows[,colmax][,in->][,colmin->][,func->1)ccccooenvvvrenerrennn 116
=value(bitmatrixobj,row[,Col][,any->]) ..ccceoveiieiieie e 117
setvalue(bitmatrixobj,row[,col],Value).........ccocoriiiiiiiiie e 117
=NrOWS(DITMALIIX0D]) .oveveviiecic e 117
=NCOIS(DItMALIIXOD]) .o e 118
=CloSUreS(DItMALFiIXOD])coveviriiieiiieee e e 118

15.9 Defining crossed variables: PrOPertieS()ooerererieriieiirrierieriesie st 118

15.10 Storing values of Variables ..o 119
110 (S AV DO 7 4) S 119
(o= To L (0] o T=) TS UR RSP 119

15.11 Saving ODJECt INO FIlEScuiieiieie e e 120

14
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

save(filename,obj1,...,0DJ1) ...ooiiiiiiiiic 120
UNSAVE(FIIENAME) ... it 120
16 Error debugging and handling..........c.ooeieiiiiiiie i 120
16.1 Errors deteCted DY J ..o 120
16.2 TraCing Vari@bIESc.cciiiiiiiiiici e 122
strace(objl,...,objn [,min->][,max->][,out->][,level->] [errexit->])........cc....... 122
;traceoff(obj 1,.. ;00N oo 123
trace(obj1,...,objn [,min->],[,max->][,level->] [,errexit->])......cccccecevrrenernrne 123
TrACELESH(EFACESEL) . .ovviveieiiete ettt et 123
An example of tracing fUNCLIONS..........cooiiiiiini s 124
16.3 J d0ES NOL WOIK COMTECLIY......uiiiiiiiiitiieiit e 125
(0121 o0 o ST 125
17 ACKNOWIEAGEMENES ...ttt et et et e et e e te e seesteesaeesteeteeneeaneensee e 125
18 RETEIEINCES ...ttt bbbt 126

19 LT CTTTTTTETTTUTETSUTTR TP PR PP PPPRPTRPR 127

15
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Introduction

J is a general program for doing different tasks in data analysis, matrix computations,
simulation and optimization. It is intended to be used mainly in different forestry
related applications. It will supersede previous linear programming software JLP
(Lappi 1992).

Most users are interested in applying J in linear programming. Linear programming
functions and examples are described in chapter 11. J version 2.0 is introducing
factory problems where transportation costs and factory capacities can be taken into
account. Factory problems are also described in chapter 11. Shortest route to linear
programming problems is to read basics of command generation programming from
chapter 3.2, at least ;inc1-function from chapter 3.2.3. Forestry LP-problem requires
also use of data-function (chapter 9.1) and usually also 1inkdata-function (chapter
9.3). LP-problems are defined with prob1em-function (chapter 11.5) and the problems
are solved with j1p-function (chapter 11.7). After version 2.1 it is possible to solve
large ordinary linear programming problems without prob1em-function using
zmatrix-0ption in j1p-function. To access the weights of optimal treatment schedules
and to get them into files requires use of J-transformations (chapter 4.) inquiry
functions (chapter 11.11), 10-functions (chapter 8), loops (chapter 7.2). An example is
given in chapter 11.

J was used to do all computations in the stem curve paper of Lappi (2006). Not all J
functions needed in this method are reported in this guide. Those interested to apply
the method should contact J. Lappi.

J is operated using text command lines, but it contains tools which make this kind of
operation mode more efficient, e.g. input can be included from files so that a part of
the input lines is reinterpreted, input lines can be generated using loop constructs etc.
These properties are called here as input programming.

1.1 System requirements

The current version of J is developed under Windows 7. It is compiled as 32-bit
application and it is running also at least under Windows XP and Windows 7.

J is written in Fortran 90 and compiled with Intel(R) Visual Fortran Composer XE
2013. There are both release and debug versions available. Both versions are ordinary
console applications, See section 1.3. how to modify the 1/0 window on the first run.

If execution of J terminates unexpectedly, the console window disappears without
outputting information about possible fault. J debug version can be used for
troubleshooting the crash problems. When the debug version is run in command
prompt window the reason of the crash is printed as well as the source code line
causing the error. When the release version is run in the command prompt window,
the problematic source code line is not printed. See chapter 16 for more information
of error handling. Compared to the release version, the debug version has bigger size
and the execution takes more time.

16
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

J is allocating dynamically memory for data structures. Both the stack and the heap
are used for the automatic and temporary array allocations. If data sets are large, J
puts automatic and temporary arrays on the heap, otherwise they are put on the stack.

1.2 Setup ofJ

The maximum number of available objects cannot be changed during a J session. It is
determined during the initialization. When J is started it tries to read first file 5 .par
from the default directory (see 'During the first use' chapter): The first line must look
like

*2000

where the number gives the maximum number of named objects. If j.par is not
available, the default number of objects is 5000.

Thereafter there can be in j.par file any number of J commands executed directly (e.g.
you can give symbolic names for colour indexes and line types used in graphics, or
you can give shortcuts for commands which are handy e.g. when including repeatedly
certain sections from include files). If you want to go directly into a specific J-
application, you can put into j.par the corresponding include command.

1.3 During the first use

It is reasonable to have the exe version in one folder, and to make shortcuts into all
working folders. Edit the properties of the shortcut (right click the shortcut icon) so
that the starting directory is the working directory. Copy also the file j.par into each
working directory.

When the program is started, there appears a prompt, possibly after initialization
commands read from 5§ .par.

sit>

Edit first the properties of the 1/0 window. The properties of the 1/O window can be
changed by right-clicking the-icon at the upper left corner. It is reasonable to make the
screen buffer rather large (large height) so that the whole history of the J session can
be seen (this is done in the layout sheet of the shortcut properties). The default height
of the 1/0 window is also probably too small. The width should be at least 81. If you
would like to use mouse in copy and paste, put quick edit option on. Also the colours
of the text and background of the J window should be made healthier for eyes (dark
text, bright background).

It may be reasonable to run J from the command prompt, and this may be necessary in
some error cases. See chapter 16.1 for more information.

To see that J is running properly, give your first commands at sit> prompt:

sit>a=7.7
sit>print (a)

17
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

The result should look like
a= 7.700000
sit>

Edit then the first command by using the arrow keys into a=s.s and submit the
command, as well as the print command. Study also the copy and paste possibilities
under the icon at the upper left corner.

All input lines entered or generated by input programming at sit> prompt are called
commands. Commands are either input programming commands (input commands) or
commands that define operations in the J working environment (operation
commands). Input commands and operation commands may read and interpret more
input lines before returning control to the command level.

It is most convenient to develop J applications using include files. There is now
available an include file ex.txt on the download web page which gives several
examples and exercises.

The working environment of J consists of named objects, temporary objects,
constants, functions, arithmetic operations and text paragraphs. Operation commands
define simple arithmetic operations or more complicated operations on the data
structures. Operation commands are defined using a transformation language. In
addition to operation commands, the same transformation language is used to define
transformation sets which are computed as a group and which can be linked in
different ways to data structures or other transformation sets.

1.4 Exiting J

To exit J program and close console window, just give enda command:

sit>end
1.5 Manual conventions

In the description of J functions, optional arguments or options are indicated by [].
Alternative options are indicated by |. Some elements may be necessary if some other
optional elements are present. These are described by detail. If there is no output for a
operation command line, the object result is used as the default output. In many
cases there is no output object, and a possible output given is ignored. If an output is
necessary, then '="is put in front of the function name. Specific implementation
details of functions are given after '#'.

Expressions in the J language will be written in the courier font.

This manual contains very few examples. More examples are given in the
accompanying include file jex.txt.

Possible future changes are indicated by ***'. Users needing these improvements
should tell their hopes.

18
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

2 J objects

There are several object types in the J environment. All objects except real and
character constants have names which can be used to refer to the object. Some of the
objects are elementary objects. Other objects are compound objects consisting of
elementary objects and possibly also of an object specific part. The named elements
of a compound object can be accessed also directly. Some element objects are
automatically created by the function which creates the compound object. Some
elements may be named independently, and the compound object just contains links to
the element objects.

There are both named and unnamed objects in a J workspace. Named objects are
created by giving output objects to J functions, and also by giving object names as
arguments for such J functions and options which accept unknown arguments. Real
numeric constants encountered in J commands are put into a vector which is used in
the same way as named real variables. The initial number of constants is 500, but if
more constants are needed, they are generated. Intermediate results of J commands
and transformations are stored into unnamed objects.

2.1 Object names

Object names start with letter or with 's'. Object names can contain any of symbols

'#.%s " Jisusing 's' to name objects related to some other objects. E.g. function

stat (x1,x2, mean->) Will store means of variables x1 and x2 into variables meansx1
and meansx2. Objects with name starting with 's* are not stored in the automatically
created lists of input and output variables when defining transformation sets. Starting
from J2.1 also the variable Result which is the output variable, if no output is
given, is not put into these lists.

Object names can contain special characters (e.g. +-*=()) if these are closed within
‘[“and ‘17, e.g. a[2+3].

Names of objects having a predefined interpretation start with capital letter. The user
can freely use lower or upper case letters. J is case sensitive.

All objects known at a given point of a J session can be listed by command:
print (Names)

2.2 Copying object: a=b

A copy of object can be made by the assignment statement a=b.

2.3 Deleting objects: delete()

When an object with a given name is created, the name cannot be removed. With

delete function one can free all memory allocated for data structures needed by
general objects:

19
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

delete (objl,..,objn)

After deleting an object, the name refers to a real variable (which is initialized by the
delete function into zero).

Note 1: Objects can equivalently be deleted by giving command

objl,..,0objn=0

Note 2: One can see how much memory each object is using print (Names) .

*** Currently, deleting a compound object will not delete the (hamed) element
objects. Thus e.g. deleting a data set will not delete the data matrix. It is now also
possible to delete a named element of a compound object and thus corrupt the
compound object (this will or will not properly realized by the function which is using
the compound object).

Note 3: Also files can be deleted with delete (file). See IO-functions for details.

2.4 Object types

The following description describes shortly different object types available in J. More
detailed descriptions are given in connection of J functions which create the objects.

Object types may change during a J session. If the final object type is not yet known
during the interpretation time, the object is first created as a real variable.

Real variables and constants
A real variable is a named object associated with a single real value. The value can be

directly defined at the command level, or the variable can get the value from data
structures. E.g.

a=sin(2.4)

h=data (read->(x1..x4)) !x1,x2,x3,x4 are variables in the data set, and get their values when
doing operations for the data.

All numeric constants appearing in transformations will be stored as real constants.
Intermediate results in arithmetic calculations are stored into unnamed real variables.
Note 1: All objects have also an associated real value. In order to make arithmetic
operations fast, the argument types in simple arithmetic functions are not checked. If a
general object is used as an argument in an arithmetic operation, then the real value
associated with the object is used. This will usually prevent the program to stop due to
Fortran errors, but will produce unintended results.

Note 2: In this manual 'variable' refers to a J object whose type is real variable.

20
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Character constants and wvariables

Character constants are generated by closing text within apostrophe signs (').
Character constants are used in I/O functions for file names, formats and to define text
to be written. E.g.

a=data(in->'filel.dat',6 read->(x1,x2))

Apostrophe character (') within a character constant is indicated with (~) (if the
character ~ is not present in the keyboard, it can be produced by <Alt >126, where
numbers are entered from the numeric keyboard), e.g.

write ('output.txt', ' (~kukkuu=~,4£f7.0)"', sqgrt(a))

Character variables get character constants as their values. An example of a character
variable definition:

cvar='filel.dat'
After defining a character variable, it can be used exactly as the character constants.

Note: The quotation mark (**) has special meaning in the input programming. See
Input programming how to use character variables within character constants.

Text object

Text object is an object which can store several lines of text. Several J functions
create associated text objects. J function text can be used to create text objects
directly. All the names of J objects are also stored in a text object called Names. The
number of lines in a text object can be obtained with nrows function and the total
number of characters can be obtained with 1en function.

Logical values

There is no special object type for logical variables. Results of logical operations are
stored into temporary or named real variables so that 0 means False and 1 means
True. In logical tests all nonzero values will mean True. Thus e.g. i f (6)b=7 is legal
statement, and variable b will get value 7. E.g.

sit>h=a.lt.b.and.b.le.8
sit>print (h)
h= 1.000000

Object lists

An object list is a list of named J object. See Shortcuts for implicit object lists and List
functions for more details. Object lists can be used also as pointers to objects, see e.g.
the selector option of the simulate function.

21
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Matrices and vectors

Matrices and vectors are generated with the matriX function or they are produced by
matrix operations, matrix functions or by other J functions. E.g. the data function is
producing a data matrix as a part of the compound data object. Matrix elements can be
used in arithmetic operations as input or output in similar way as real variables.

See Matrix computations.

Transformation set

A transformation set groups several operation commands together so that they can be
used for different purposes by J functions and J objects. A transformation set contains
the interpreted transformations. For more details see J function for defining
transformation sets: trans().

Transformation sets can be called using ca11 function, so that all transformations
defined in the set are done once. Function result also calls transformations but is
also returning a value. When transformation sets are linked to data objects, then the
transformations defined in transformation set are done separately for each
observation.

There is an implicit transformation set scursors which is used to run the command
level. The name scursors may appear in error messages when doing commands at
command level. Another transformation set sva1$ which is used to take care of the
substitutions of "-sequences in the input programming. Some J functions use also
implicitly transformations set scursor2s

Simulator

A simulator is a transformation set with a few additional parameters. The simulator is
described in the Simulator chapter.

Data set

Data set is a compound J object linking together data matrix, variable names,
transformations and links to other data sets in a data hierarchy. Data set object is
described in chapter Data sets.

Problem definition object

Problem definition object is produced by the probiem function, and it is described in
Linear programming.

Figure object
Graphic functions produce figure objects. Each figure object can consist of several

subfigures. Each figure object stores information of x- and y axes, the range of all x-
and y-values, and for each subfigure information of the ranges of x and y in the

22
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

subfigure plus the subfigure type and the needed data values. See Plotting figures for
more information.

Function objects

Different J functions can produce function objects which need several associated
parameters and which can be used through vaiue function.

Storage for wvariables

Especially in a simulator it may happen that a set of variables have certain values but
the same variables are used for other purposes for some time and then one would like
to get the previous values. There is special J object used to store the values, and
special store and 1oad function to deal with the storage.

Bitmatrix

A bitmatrix is an object which can store in small memory space large matrices used to
indicate logical values. A bitmatrix object is produced by bitmatrix function or by
closures function from an existing bitmatrix. Bitmatrix values can be read from the
input stream or file or set by setvalue function. The values of bitmatrix elements can
be accessed with va1ue function.

Note: Also ordinary real variable can be used to store bits. Se bit functions

Trace set

Trace set is an object created by ; t race function which is used by tracetest
function to test if a set of variables has been updated. See chapter "Tracing variables'

25 Objects created automatically and default names

The following objects are created automatically at start-up:

Names text object containing the names of all
objects

Pi real variable having value 3.14..

Result real variable used to store the result if
output variable is not given

Record variable getting the record number when
reading data files

Obs the default real variable used to indicate

the number of observation within a data set

SCursors$ transformation object used to run the command
level

SCursor2$ | another implicit transformation set

Svals transformation object used to extract values

23

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

of mathematical statements, used, e.g., in
input programming

SDatas$

default data set name for a new data set
created by data-function

Data

a list object used to indicate current data
sets

LastData

a list objectreferring to the last data set
made, used as default data set

object name used to indicate console and '*'
format in reading and writing commands

Duplicate

a special variable used in data function when
duplicating observations

SBuffer

a special character object used by the write
function

The following names are used as default names for objects created by J functions:

Figure | the default figure object created with graphics

functions

T the default variable for the period number in a
simulator

Unit the variable for the observation number in the

unit data made by the simulate function

The following objects are created by some functions whenever these functions are

called.
Object created explanation
by

Tracevars ;trace cumulative list of all objects used
in all ;trace functions

Tracestatus ;trace row vector corresponding to Tracevars
list indicating if tracing code is
generated

Tracelevel ;trace vector indicating the tracing level
for variables having the tracing
code.

Tracecount ;trace counts of changes

Traceminstatus | ;trace indicates if minimum checking is
effective

Tracemin ;trace minimum values

Tracemaxstatus | ;trace indicates if maximum checking is
effective

Tracemax ;trace maximum values

3 Command input and output

24
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

3.1 Inputline and input paragraph

J reads input records from the current input channel which may be terminal, file or a
text object. When J interprets input lines, spaces between limiters and function or
object names are not significant. In input programming function start with *;" which is
part of the function name (and there can thus be no space immediately after ;"). If a
line (record) ends with ', ,'+',"*,"-""(",'=" or with ">, then the next record is interpreted
as a continuation record. All continuation records together form one input line. If the
continuation is indicated by other continuation characters than the *>', the continuation
character is kept as a part of the input line. If continuation is indicated by ">' then '>'
will not remain in the logical input line (this assumption originates from old JLP) One
input record can contain 256 characters, and an input line can contain 2048 characters
(this can be increased if needed)

6"

Starting from J2.1, the continuation line cannot start with ‘*” or ‘!” because these are

reserved to indicate comments.

Note . '/' cannot be used as last character indicating the continuation of the line
because it can be legal last character indicating the end of an input paragraph.

When entering input lines from the keyboard, previous lines given from the keyboard
can be accessed and edited using the arrow keys.

To copy text from the J window into the clipboard right-click the upper left icon,
select Edit, and then select Mark. Next click and drag the cursor to select the text you
want to copy and finally press Enter (or right-click the title bar, select Edit, and in the
context menu click Copy).

To paste text from the clipboard into the J command line right-click the title bar,
select Edit, and in the context menu click Paste. Console applications of Intel Fortran
do not provide copy and paste using <cntrl>c and <cntri>v.

All input lines starting with '+" will be comments, and in each line text starting with "!"
will also be interpreted as comment (! debug Will put a debugging mode on for
interpretation of the line, but this debug information can be understood only by the
author). If a comment line starts with =", it will be printed.

Many J functions interpreted and executed at the command level need or can use a
group of text lines as input. In these cases the additional input lines are immediately
after the function. This group of lines is called input paragraph. The input paragraph
ends with '/', except the input paragraph of text function end with '/ /" as a text object
can contain ordinary input paragraphs. It may be default for the function that there is
input paragraph following. When it is not a default, then the existence of the input
paragraph is indicated with option in-> without any value. An input paragraph can
contain input programming commands; the resulting text lines are transmitted to the J
function which interprets the input paragraph.

Examples of input paragraphs:

25
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

tr=trans ()

a=log (b)

write($, ' (~sinlog is=~,f4.0)"',sin(a))
/

b=matrix(2,3,in->)

1,2,3

5,6,7

/

3.2 Input programming

The purpose of the input programming is to read or generate J commands or input
lines needed by J functions. The names of input programming commands start with
semicolon ';'. There can be no space between ;' and the following input programming
function. The syntax of input programming commands is the same as in J functions,
but the input programming functions cannot have an output. There are also controls
structures in the input programming. An input paragraph can contain input
programming structures.

3.2.1 Addresses in input programming

The included text files can contain addresses. Addresses define possible starting
points for the inclusion or jump addresses within an include file. An address starts
with semicolon (;) and ends with colon (:). There cannot be other text on the address
line. E.g.

;adl:
See: ;incl ;goto

Note: The definition of a transformations set can also contain addresses. These
addresses start with a letter and end also with colon (:).

3.2.2 Changing "..." sequences

If an original input line contains text within quotation marks, then the sequence will
be replaced as follows. If a character variable is enclosed, then the value of the
character variable is substituted: E.g.

directory="D:\J\"
name="areal'
extension="'svs'

then

in->'"directory""name"."extension"'

Is equivalent to

in->'D:\j\areal.svs'

26
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

If the "-expression is not a character variable then J interprets the sequence as an
arithmetic expression and computes its value. Then the value is converted to character
string and substituted into the place. E.g. if nper is variable having value 10, then
lines

x#"nper+1"#"nper"=56
chv="'code"nper"'

are translated into

x#11#10=56
chv="'codelO'

With """ substitution one can define general macros which will get specific
interpretation by giving values for character and numeric parameters, and numeric
parameters can be utilized in variable names or other character strings. In
transformation sets one can shorten computation time by calculating values of
expressions in the interpretation time instead of doing computations repeatedly. E.g. if
there is in a data set transformation

x3="sin (Pi/4)"*x5

Then evaluation of sin (pi/4) is done immediately, and the value is transmitted to the
transformation set as a real constant.

3.2.3 Input programming commands and control structures

The input programming has its own commands and control structures which will
deliver text lines to the command level.

;incl([file] [, £from->])
Includes lines from a file or from a text object.

Argument: file name (character constant or character variable) or a text object, if
omitted, then the same file is used as in the previous ; inc1 ().

Option: from gives the starting address for the inclusion, address is given without
starting *;" and ending ":".

Examples:

;incl ("file.txt!")

;incl ('file2.txt', from->"adl"')
;incl (from->'ad2')

Note 1: Include files can be nested up to 4 levels.

Note 2: See Chapter 'Defining a text object with text function and using it in ;incl’
how to include commands from a text object.

27
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

;return

Closes the current include file, and changes the input channel to the upper include file
or to the console

Note 1: The include file can be open simultaneously in a text editor during the J
session if you open the file first with the text editor. If you want to include sections
from a changed file, remember to save the changes before include. It is a handy to
have after each ; return the text which can be used to include the previous section.
E.g.infile y1p.inc:

;test:

;return
;incl ('jlp.inc', from->"test"')

Then after editing the test section, copy the ; inc1-line into clipboard and drop it into
J session by clicking the right button of the mouse.

Note 2: Transformation set can also contain return Statement (without '; ") which
stops execution of transformations in the transformation set.

;do(i,start,last[,step])
purpose: to generate a sequence of input lines in a loop
Arguments: index variable, initial value, final value, step (optional, default is 1)

;enddo
purpose: to close a ;do () loop

Note 1: There can be 6 nested ; do loops. It is not recommended to use ; do loops in
the console input even if this is possible.

Note 2: Form ;end do is also accepted.

Examples (in a include file):

;do(i,1,5,1)
per"i"=i*10

; enddo
g=trans ()
;do(i,1,5,1)
per"i":"i"*lo
;enddo

/

call (g)

It is necessary to use "i"*10 in the input paragraph of trans-function. If the
transformation line is per"i"=i*10, then during calling g-transformations, the value
of variable i is the same (5) for each transformation line generated by the ; do loop.

28
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

;if(..)

Generate input based on some condition. The text after the condition may be input
command or operation command or text within an input paragraph.

Argument: logical or arithmetic statement producing zero (False) or nonzero value
(True)

Examples:

;if (Feasible) ;incl ('report.inc', from->"'summary"')
;1f (debuglevel.gt.2)print ('Note: debug information in file
debug.txt')

;if (value) ; then

;elseif (value) ;then

;endif
Picks several lines into input based on some condition.

The argument for ;if or ;elseif is a logical or arithmetic statement (or variable)
producing zero (False) or nonzero value (True)

;goto('adr')

Start reading input from another place in an include file or include text object.
Jumping is allowed only forward.

Argument: character constant or character variable, the address without starting '; ' and
ending ':'

Example, in an include file:

;goto('ask'")

;ask:

*what to do next: taskl, task2 or end
askc (ad)

;goto (ad)

;taskl:

;return
;task2:

;return
;end:
;return

29
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Note: Software specialists do not recommend using goto structures, but e.g. the
structure of the example above may be useful (it works like calling a subroutine). If
you want to use several sections from a file, you can define a driver include file which
contains just ;incl(, from->)- lines

3.2.4 Utilizing object lists: @list and @list(elem)

There is special object list object in J. An object list is generated with 1ist function,
e.g.

xvar=1list (vol#1l,ba#1l,dbh#1)

Thereafter @xvar in any place of the input line is equivalent to
'vol#1l,ba#l,dbh#1'.

The names of individual variables in a list can be accessed using @xvar (elem)
where e1em IS a numeric expression obtaining a value between 1 and 1en (xvar) .

There is subtle difference between expanding whole list using . @xvar and accessing
the names of individual variables in a list using @xvar (elem) . When J expands the
whole list, it first interprets the whole transformation line as if @xvar would be a
single argument, and then finally it just replaces the index of the argument by all
indices of the elements in the list. When J encounters @xvar (elem) then the value of
elen IS first computed and then the name the corresponding variable in the list is
dropped into the same place before interpreting the line (i.e. J proceeds as in
interpreting "-sequences). Thus we may have:

alist=1list (a,b)
@alist (1) #Qalist(2)=Q@alist(l)*Qalist (2)

which is equivalent to:
attb=a*b

Some function can have lists as their arguments and some options can have lists as
their values. In those cases the name of the list object must be used without '@". See
chapter List functions for more details about lists

Note: Lists can be also used to define pointers to single variables. E.g. a general
method defined in an include file (a macro) can refer to a variable using e.g. @arg.
Then we can give specific interpretation to the variable giving at the command level
arg=list (temperature), and if we then include the macro from an include file then
all reference using earg refer to the variable temperature. Of course we can make
the arg list to point to several variables by defining it to be a list of several objects.

3.2.5 Shortcuts for implicit object lists: x1...x5, ?%x1

Many functions can have several arguments, and also an option can refer to many
objects. There are some shortcut notations for referring to several objects.

mailto:.@arg

30
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

If several objects have increasing numeric or character end in their names, then
implied object lists can be formed using the '. . ." construct. E.g.

stat(x4...x10)
stat (vara...vard)

are equivalent to

stat (x4,x5,x6,x7,x8,x9)
stat (vara, varb, varc,vard)

All variables having a common part in their name can be referred using '2' to indicate
the unspecified part. E.g. command

print (mean%?)
will print all variables whose name start with 'means’, and command

print (?%x1)

will print all variables whose name end with 'sx1' (€.9. mean%x1, min%x1, etc.)
3.2.6 Key shortcuts

It is possible to define key shortcuts using character variables. If the whole input line

consists of the name of a single character variable, then the value of the character
variable is taken as the input line. E.g. input lines

I=';inc (~j.inc~)"'

I
give the same result as
;inc('j.inc')

Note: the character variable 1 can be utilized according to the rules of the input
programming equivalently as

"I"

Key shortcut are handy when one is repeatedly including the same part from an
include file when testing e.g. a simulator.

3.2.7 Defining a text object with text function and using it in ;incl

Text objects are created as a side product by many J functions. Text objects can be
created directly by the text function which works in a nonstandard way. The syntax is:

31
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

=text ()
I
Output: a text object

The input paragraph ends exceptionally with '/ /" and not with '/'. The lines within the
input paragraph of text are put literally into the text object (i.e. even if there would be
input programming functions or structures included).

If the text object is used as an argument of ;inc1 () then everything goes as if the lines
would be included from a file. Using text objects this way makes it possible to define
text macros in the same file as other commands.

3.2.8 Accessing text object lines

Text object lines can be accessed similarly as list elements. If textoby is a text
object, then the row irow of the text object can be dropped into the input lines using
@textobj (irow). E.Q. if rows%prob IS the text object describing problem rows in a
problem object prob, then row 3 of the problem can be printed using

print (@rows%$prob (3))

Text object lines can be printed in the same line with numeric variables by dropping
text object lines into the format in a write -function. Eg. if the ouput of the j1p -
function is outp, the both the problem row and the value of the constraint can be
written:

write ($,’ (~@rows%prob(3)=~,f8.2)’,rows%outp (3))

3.3 Immediate operations starting with '}’

Currently there are two special commands (; trace and ; traceof£) which looks like
input programming commands, but which can be characterized as 'immediate
operations' or 'interpreter directives'. There may be more such commands in the
future: The ; trace command tells that the transformation interpreted should start to
generate special tracing information among all the commands or transformations
given thereafter, and ; traceoff tells to stop to generate such code. See Error
debugging chapter for more information.

3.4 Controlling output

It is quite difficult to design the amount of printing logically in environment like J.
There should be enough output to see that J is doing what it should do. But using

32
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

input programming one can generate efficiently huge amount of commands which
could easily cause very much printing.

First we must separate printing related to the input programming or input paragraphs
and printing output of jlp functions. There are two global variables controlling either
of these, printinput and printoutput. The default value for both of these variables
Is 2. Value o indicates no printing, value 1 less than default and values>2 indicate
more printing. Value 10 indicates debugging type of printing. For each jlp function,
there will be available print-> option which will locally guide printing.

4 Jtransformations

Most operation commands affecting J objects can be entered directly at the command
level or packed into transformation object. In both cases the syntax and working is the
same. A command line can define arithmetic operations for real variables or matrices,
or they can include functions which operate on other J objects. General J functions
can have arithmetic statements in their arguments or in the option values. In some
cases the arguments must be object names. In principle it is possible to combine
several general J functions in the same operation command line, but there may not be
any useful applications yet, and possibly some error conditions would be generated.

Definition: A numeric function is a J function which returns a single real value.
These functions can be used within other transformations similarly as ordinary
arithmetic functions. E.g. weights () isa numeric function returning the number of
schedules having nonzero weight in a JLP-solution. Then

print (sqrt (weights ())+P1i) IS a legal transformation.

4.1 Structure of general J functions

The general (non arithmetic) J functions are used either in statements
func (argl,..,argn,optl->valuel,... ,optm->valuem)

or

output=rfunc (argl,..,argn,optl->valuel,... ,optm->valuem)

If there is no output for a function in a statement, then there can be three different
cases:

i) The function does not produce any output (if an output would be given, then J
would just ignore it)

il) The function is producing output, and a default name is used for the output (e.g.
rResult for arithmetic and matrix operations, rigure in graphic functions).

iii) The function is a sub expression within a transformation consisting of several parts
including other function or arithmetic operations. Then the output is put into a

33
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

temporary unnamed object which is used by upper level functions as an argument
(e.g. a=inverse (b) *t (c))

If the value of an option is not a single object or numeric constant, then it must be
enclosed in parenthesis.

Note 1: It is useful to think that options define additional argument sets for a function.
Actually an alternative for options would be to have long argument lists where the
position of an argument determines its interpretation. Hereafter generic term
‘argument' may refer also to the value of an option.

Note 2: When J is interpreting a function, it is checking that the option names and the
syntax are valid, but it is not checking if an option is used by the function. Also when
executing the function, the function is reacting to all options it recognizes but it does
not notice if there are extra options, and these are thus just ignored.

An argument for a J function can be either functional statements producing a J object
as its value, or a name of J object. Some options can be without any argument
(indicating that the option is on). Examples:

a=sin(cos (c)+b) ! Usual arithmetic functions have numeric values as arguments,

I here the value of the argument of cos is obtained by ‘computing’ the value of real variable c.
stat (D, H,min->,max->) ! Here arguments must be variable names

plotyx (H,D, xrange-> (int (min%D, 5), ceiling(max%D,5))) !arguments of the
function are variables, arguments of option xrange are numeric values

c=inverse (h+t (g)) ! The argument can be intermediate result from matrix computations.

If it is evident if a function or option should have object names or values as their
arguments, it is not indicated with a special notation. If the difference is emphasized,
then the values are indicated by va11, ..valn, and objects by ob1, .., objn, Or the
names of real variables are indicated by vari, .., varn.

There are some special options which do not refer to object names or values. Some
options define a small one-statement transformation to be used to compute something
repeatedly. E.g.

stat (D,H, filter->(sin (D) .gt.cos (H+1)) !only those observations are accepted which
pass the filter

draw (func->(sin ($x)+1),x->$x,xrange->(0,10,1)) ! the func option transmits
the function to be drawn not a single value.

42 Common options
There are some options which are used in many J functions. Such options are e.g.
in->

If a J function needs to read some data or text, then the source is given in in-> option.
If there is no value for option, then the source is the following input paragraph. If the

34
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

value is a character constant or a character variable, then the source is the file with
that name.

data->

If the function is using data sets, the data sets are given in data-> option. All data sets
will be treated logically as a single data set. If a J function needs to access data, and
the data-> option is not given then J is used default data which is determined as
follows.

If the user has defined an object list pata consisting of one or more data sets, then
these will be used as the default data set. E.qg.

Data=list (dataa,datab)

When a data set is created, it will automatically become the only element in Lastbata
list. If the pata list has not been defined and there is no data-> option, then the
LastData dataset will be used.

trans->

When a data set is created with data function, trans-> option defines a
transformation set which is permanently associated with the data set (unless the
association is changed with editdata function). In all functions which are using data
sets, trans-> option defines a transformation set which is used in this function. An
example:

tr=trans ()
Xy=x*y
/

stat (xy, trans->tr)

err->
The err-> option indicates a transformation set which will be called if an error occurs
within a J function. In this transformation set one can e.g. print information about

values of variables etc. Currently this option is present only in stempolar function,
but it will be included in other functions.

4.3 J function for defining transformation sets: trans()
Transformation sets are created with the trans function.

=trans ([input->] [,matrix->] [,arg->] [, result->]
[,1local->] [, source->])

35
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

options:

input If present without any values, it indicates that if there are any arguments in
transformations which are not yet known they will be created as real variables during
interpretation time. If there are variables given as values for the option, then these
variables will be created as real variables (and no error occurs when referring to these
variables). But if there are other unknown arguments, an error occurs.

matrix The objects given in the option are interpreted to be matrices even if
the objects do not yet exist or if they are not matrices at the interpretation time. These
objects can be used in statements referring to elements of the matrices e.g.
a(1,1)=b(i). Arithmetic operations for the whole matrices (e.g. a=b) will also be
properly interpreted). The matrices need not be otherwise defined in the interpretation
time. The actual type and dimensions will be checked during execution time. If a
matrix already exists in the interpretation time, it need not be indicated in the matrix
option.

arg If the transformation set is defining a function to be used in the va1ue function
then arg option gives the name of the variable used as the argument. Default is
variable arg. The arg variable permanently associated with a transformation set can
be temporally bypassed by giving arg option in value function.

result If the transformation set is defining a function to be used in value
function or in result function then result option gives the name of the variable
defining the output of the function. Default is variable resu1t. The result variable
associated with the transformations set transformation can be temporally bypassed by
giving result option in value or result functions.

local Gives object names which are intended to be used only locally in the
transformation set. These objects will in fact be global objects but each object name
will have prefix formed from the transformation set name and '\". Eg

tr=trans (local->(a,b))
will make objects tr\a and tr\b.

source If value zero is given for the option, then a text object containing the
source code is not generated. Source code is used to generate debugging information
when errors occur.

Each line in the input paragraph is read and interpreted and packed into a
transformation object, and associated input%tr and outputs tr lists are created for
input and output variables (tr indicating the output of the trans function). Objects
having names starting with 's' are not put into the input or output lists. The source
code is saved in a text object sourcestr if option source->0 is not given.

*** Now there can be only one argument variable. If there is need for more argument
variables, we can allow more than one

36
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

4.4 Executing a transformation set explicitly: call()

Interpreted transformations in a transformation set can be automatically executed by
other J functions or they can be executed explicitly using ca11 function.

call (tr)
Argument: a transformation set

ca11 function can be used at the command level or within transformation set.
Defining transformation sets which are called within other transformation sets one can
use some transformation as subroutines. But the transformation sets do not yet have
any system for argument passing, thus all objects within transformations are global
objects. Using input programming one can define transformations which get specific
interpretation after giving values to character variables and object lists. But these
transformations must be interpreted first with trans function before they can be used.

Note: A transformation sets can be used recursively, i.e. a transformation can be
called from itself. The depth of recursion is not controlled by J, so going too deep in
recursion will eventually lead to a system error.

Example:

tr=trans (input->level) !level will be initialized as zero
write($,' (~recursion level~,f)',level)

level=level+l

call(tr)

/

Try it from the command level (it may take a while to reach the bottom):

call (tr)

45 Using a transformation set as a function: result()

Interpreted transformations in a transformation set can be used as a function returning
a single numeric value using result function.

result(tr [,result->])
Argument: a transformation set

Option: result , defines the variable whose value is the result of the function, default
is the result variable associated with the transformation set (the default result variable
iSResult)

Note: A transformation sets can be used recursively, i.e. a transformation can be
called from itself. The depth of recursion is not controlled by J, so going too deep in
recursion will eventually lead to a system error.

37
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Note 2: There is no argument passing for changing the values of variables used in the
transformation set as input variables. There is argument passing system for function
value which also returns a value from a transformation set.

Example:

sit>s=trans (input->)

trans>Result=a+tb

trans>f=Result+1l

trans>/

sit>a,b=1,3

sit>print (result(s),result (s, result->f))
4.000000

5.000000

46 Using atransformation set as a function with an
argument: value()

Interpreted transformations in a transformation set can be used as a function returning
a single numeric value using value function.

value (tr, xvalue[,arg->][,result->])
Arguments:
tr a transformation set

xvalue Value put into the argument variable before calling the transformation set
options

arg variable used as the argument variable, it bypasses the argument variable
associated with the transformation set

result , defines the variable whose value is the result of the function, default is the
result variable associated with the transformation set

See value function for more details

5 Arithmetic computations

An arithmetic expression is a statement producing single real value. Arithmetic
statements working with real variables have any of the three forms

output_variables=arithmetic expressions
matrix element= arithmetic expression

arithmetic expression

38
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

An arithmetic expression (statement producing a single real value) without an output
variable is converted into statement

Result= arithmetic expression.

The rules for handling the case where there can be several output variables or
arithmetic expressions are as follows:

If there are several output variables and one arithmetic expression, then each output
variable obtains the value of the expression. E.g.

yl...y4=sin (x1)

If there are equal number of output variables and expressions, then each expression
defines a assignment.. E.g.

yl...y3=1,2,sqrt (20)

If there are several output variables and more than one values but the number of
output variables and values do not match, an error occurs.

Note: a copy of a general object can also be made with an assignment statement. Only
one object can be copied in one statement

5.1.1 Standard numeric expressions

An arithmetic expression consisting of ordinary arithmetic operations is formed in
standard way. The operations are in the order of their precedence:

unary minus

x nteger power
* real power

* multiplication

/ division

+ addition

- subtraction

The reason for having a different integer power is that it is faster to compute and a
negative value can have an integer power but not a real power.

5.1.2 Logical and relational expressions

There are following (Fortran style) relational and logical operations (alternative
notation for relational comparisons):

39
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

.eq. == equal to
.ne. <> not equal
.gt. > greater than

.ge. >= greater or equal
e, < less than

Jle. <= less or equal
.not. negation

.and. conjunction
.or. disjunction
.eqv. equivalent.
.neqv. not equivalent

The relational and logical expressions produce value 1 for True and value O for False.
Note: Testing equivalence can be done also using 'equal to' and 'not equal’, as the
same truth value is expressed with the same numeric value.

5.1.3 Arithmetic functions

The arithmetic functions return single real value.

sqgrt, exp, log, loglO, abs

sqrt (x) square root, sqrt(0) is defined to be 0
sqrt2 (x) sign(x)*sqrt(abs(x))

exp (x) e to power x

1og (x) natural logarithm

10910 (x) base 10 logarithm

abs (x) absolute value

Real to integer conversion

nint (x) nearest integer value
nint (x, modulo) returns modulo*nint(x/modulo) ,e.g.
nint (48,5)=50;, nint (47,5) =45,
int (x) integer value obtained by truncation
int (x, modulo) returns modulo*int(x/modulo), e.g. int (48, 5)=45
ceiling(x) Smallest integer greater than or equal to x.
ceiling (x,modulo) returns modulo*ceiling(x/modulo), e.g. ceiling (47, 5)=50.
floor (x) greatest integer smaller than or equal to x.
floor (x,modulo) returns modulo*floor(x/modulo), e.g. f1oor (47,5)=45.

min, max

min(x1,...,xn) minimum
max (x1,...,xn) maximum

40

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

sign

sign(val) returns 1 if val>0 otherwise returns -1.
dot(cl,..,cn,x1,..,xn)

dot product, c1*x1+...cn*xn, see also matrix function dotproduct

which (condl,valuel, .., condn,valuen|,valuedef])

Takes first value for which the condition is true. If no condition is true then the
valuedef IS given, and if there is no valuedef argument then the initial value of the
output is unchanged (producing probably unintended result, if which is used within
another expression).

Trigonometric functions, argument in radians

Inverse trigonometric functions, result in radians

acos (x)
asin (x)
atan (x)
acotan (x)

Inverse trigonometric functions, result in degrees

Hyperbolic functions

sinh (x)
cosh (x)
tanh (x)

41
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

5.1.4 Probability distributions
pdf (x[,mean] [,sd])

Returns the density function of normal distribution. Default values for mean is 0 and
for sd 1 (if sd is given then the mean must be also given even if it is zero)

** |_ater there will be other distributions specified by option.

cdf (x[,mean] [,sd])

Returns the cumulative distribution function for normal distribution. Default values
for mean is 0 and for sd 1 (if sd is given then the mean must be also given even if it is
zero)

** |_ater there will be other distributions specified by option.

5.1.5 Random numbers

ran()

Returns a uniform random number between 0 and 1.

rann ()

Returns normally distributed random number with mean zero and variance 1
***currently a quick and dirty generator

***Later possibility to determine the seed for the sequence will be added.
5.1.6 Special numeric functions

npv (interest,incomel, ..,incomen, timel, .., timen)

Returns net present value for income sequence incomel, ..., incomen, OCCUrring at
times time1, .., timen When the interest percentage is interest.

5.1.7 List arithmetics

We can do arithmetic operations for several variables using lists List arithmetics work
very much like matrix algebra, the difference is that arguments and results are in
named real variables.

***The list arithmetics has replace previous functions multcl,multcll,multll,multlil.

List arithmetics is easier to understand using examples (see jex.txt):

alist=1list (al, a2, al)

42
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

blist=1list (bl,b2,Db3)
clist=1list(cl,c2,c3)

Ralist=1,2,3

@blist=4,5,6

clist=alist+blist !list=list+list
print (@clist)

cl= 5.000000

c2= 7.000000

c3= 9.000000

clist=alist+5 !list plus real value
write ($,$,Q@clist)

6.000000 7.000000 8.000000
clist=-alist 'negative
write($,$,Qclist)

-1.000000 -2.000000 -3.000000
clist=blist-alist !subtract
write($,$,Qclist)

3.000000 3.000000 3.000000
clist=2*alist !list =real value * list
write($,$,Qclist)
2.000000 4.000000 6.000000
clist=alist*blist ! element by element multiplication
write ($,$,Q@clist)
4.000000 10.00000 18.00000
cval=alist*blist ! if output is real variable then dot product is
computed

print (cval)
cval= 32.00000

**There cannot yet be several list arithmetic operations in the same line. It would be

possible to extend the list arithmetic also that way that elements of lists could be
matrices.

52 Derivatives
dl,..,dn=der (x1,..,xn)

The ger function computes derivatives of a function with respect to one or several
arguments using analytical derivation rules. The function is given in the next line.

Example

da, db=der (a, b)
f=a*exp (-b*x)

There is available a macro file which is using the der function and ordinary linear
regression to compute nonlinear least squares regression.

6 Matrix computations

If the matrix dimensions agree, then matrix addition, subtraction and multiplication
can be defined using standard arithmetic operations. If in addition either argument is
scalar, then the scalar is added into each element. If in multiplication either argument
is a scalar, then each element is multiplied.

43
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

The following matrix functions are currently available:

6.1 Defining a matrix: matrix()

matrix (nrows[,ncols] [,in->][,diagonal->] [,form->]
[,values->])

(values if in-> option is present)

/

Generates a matrix.

Arguments:

nrows nhumber of rows (can be later obtained using nrows-functio)

ncols number of columns, default is 1 (that is vectors are assumed to be column
vectors). Number of columns can be seen using nco1s-function

Options:

in If in option is present then the values are given in a input paragraph

diagonal This option indicates that the matrix is diagonal. For diagonal matrix the
values given in values option or in the next input paragraph refer only to the diagonal
vector.

form The option indicates that each row is read separately. At the end of the row
there can be comments and if error occurs during reading, the input line causing the
error is printed. If form option is not given all the matrix values are read in one read
statement.

values The values are given within the option, transformations can be used to
define the values. If only one value is given then this value is given for all elements,
otherwise so many elements are filled in row order as there are values.

If values are not given through in or values options then the elements will be zero.

Examples:
b=matrix (2,4,in->, form->)

! there can be comments if there is form option

matrix (3,values->(sin(l),sin(2),cos (Pi)) lvector
Example of a J session defining matrix and its elements separately

a=matrix (2, 2)
ta=trans|()
do(i,1,2)

44
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

a(i,i)=1i
enddo

/

call (ta)

Matrices are used as arguments for some J functions. Arithmetic operations +,- and *
work also for matrices. A copy of another matrix is obtained by assignment (e.g. a=b).
Matrix elements can be used both as input and output in transformations. Using
matrix Option in trans function, matrices can be used in definition of transformation
set before actual matrices are created.

Starting from J2.1 all elements of a matrix can be se with simply assignment

statement, e.g. amat=0. Previously such assignment statement made amat a real
variable and substituted the value to this variable.

6.1.1 Matrix functions

setmatrix(matrix,value [,diagonal->])

Puts all elements equal to the given value, or all the diagonal elements if diagonal->
option is present.

t(a)

Computes the transpose of a matrix

argument: a matrix object

Note: transpose function can be used within a compound transformation, e.g.
h=b*t (a)

inverse (a)

Compute the inverse of a matrix

Argument: a square matrix or a scalar, for a scalar argument inverse return the
reciprocal of the value

dotproduct(a,b[,limitl] [,1imit2])
Computes the dot product of two vectors

Arguments: a and b are matrix objects, which are considered as vectors made by
putting rows after each other.

dotproduct (a,b,n) computes the dot product using n first element.

45
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

dotproduct (a,b, first,last) computes the dot product using elements from
first t0 last

Note 1: dotproduct using only part of elements is useful e.g. in a simulator where
simulations are done at tree level, and tree vectors reserve space for all potential trees.

Note 2: If a and b are column vectors, then dotproduct (a,b) IS equivalent to
t (a) *b.

elementsum(a[,limitl] [,1limit2] [, row->] [, column->])
Computes the sum of elements of vector

Argument: a IS matrix object, if column or row option is not given and the
matrix is a general matrix (i.e. both dimensions>1) the matrix is considered as a
vector made by putting rows after each other.

elementsum(a,n) computesthe sum using n first element.
elementsum (a, first, last) computesthe sumusing elements from first to last

options:

row gives the row whose elements are added (1imit1 and 1imit2 can be used to
specify a part of the row vector)

column Qives the columns whose elements are added (1imit1 and 1imit2 can be
used to specify a part of the row vector)

elementprod(a,b)

Computes the matrix where each element is the product of the corresponding
elements of the argument matrices.

Arguments: a,b matrices having the same number of elements, they can also be
intermediate results of matrix operations (e.g. c=elementprod (a, c+d)). If aand b
are real numbers, their ordinary product is formed.

submatrix(a[,row->][,column->])
Takes a submatrix from a matrix
Argument: a matrix

Options:

row if only one value is given then this row is taken, two values indicate a range of
rows, the second must be negative of the upper bound, e.g. row->(3,-5).

column if only one value is given then this column is taken, two values indicate

a range of columns, the second value must be negative of the upper bound, e.g.
column->(3,-5)

46
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

diagonal indicates that the a column vector is made by picking the diagonal
elements from the whole matrix or from the row range indicated by the row option.

**The syntax of row and column options is prepared to the case where one can pick
individual rows and columns. Currently only one row (column) or range of
consecutive rows (columns) is supported.

nrows (a)

Returns the number of rows in a matrix

Argument: a matrix object

Note: nrows works also for text objects,

ncols (a)

Returns the number of columns in the matrix

Argument: a matrix object

len(a[,any->])

purpose: return the number of elements in the matrix (=nrows*ncols)
Argument: a matrix object

Option

any len returns value-1 if argument is not legal object for 1en (without any->an
error occurs)

Note: 1en works also for text objects, returning the number of characters in a text
object, and for a list it returns the number of elements in the list, and for regression
object number of parameters.

index(val, a[,any->])

purpose: to locate the position of a number in a matrix (usually vector). Note, the
matrices are stored in row order.

Arguments:
val areal value

a matrix object

Option

47
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

any indicates that it will be searched between which two elements in the matrix va1
is, it is assumed that the matrix is in increasing order. Let i denote the output of the
function. Then i is the index of element such that va1 > ith element in the matrix. If
val is smaller than the first element, then the output will be 0.

Note 1: without any option, an error occurs if va1 is not found in the matrix.

Note 2. when the first argument is list, then index function returns the position of an
object in an object list, see list functions.

sort (a,key->(keyl[,h key2]))

Makes a new matrix obtained by sorting all matrix columns according to one or two
columns.

Argument: a matrix object

Absolute value of xey1 and the value of xey2 must be legal column numbers. If
key1 Is positive then the columns are sorted in ascending order, if keyl is negative
then the columns are sorted in descending order. If two keys are given, then first key
dominates. It is currently assumed that if there are two keys then the values in first
key column have integer values.

Note 1: If xey2 isnot given and key1 is positive, then the syntax is: sort (a, key-
>keyl)

Note 2: If there is no output, then the argument matrix is sorted in place.

Note 3: The argument can be the data matrix of a data object. The data object will
remain a valid data object.

***|ater there will be sort function for data object so that the key variables can be
given using variable names. Currently index-function can be used to get the proper
column number of the data matrix.

*** Other matrix functions, e.g., computation of eigenvectors will become in later
versions.

7 Transformation control structures

Within J transformations, there can be similar controls structures as in the input
programming. The difference is that these will remain as part of the transformation
set. Only the 'i £ () output=.."structure is allowed at the command level, other are
possible only within a transformations set.

48
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

71 If

if ()

The one line if-statement can have one of the following forms:
if () output=..

or

if () func ()

A transformation is done depending on the truth value of the condition
Groups of transformations can depend on conditions using structure:

if () then

elseif () then

else

endif

There can be 4 nested i £ () then Structures. If-then structures are not allowed at
command level.

72 Loops
The loop construction in J looks as follows:
do(i,start,end[,step])

enddo

Within a do —loop there can be cycle and exitdo Statements

49
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

cycle

The cycle statement transfer the control to the enddo statement (i.e. to the next
iteration)

exitdo

The exitdo statement transfers the control to the next statement after enddo.

There can be 8 nested loops. po loop is not allowed at command level.

7.3 Return from a transformation set

return

At return the execution of transformations in the current transformation set stops.
The control returns to the point where the transformation was called, e.g., to command
level, or to the function going through the data, or to an other transformation set.
Note 1: A return is automatically put to the end of a transformation set.

Note 2: Notice the difference between return and the input programming command
; return Which closes an include file and thereafter input lines are read from an upper
include file or from the terminal.

errexit (argl,..,argn)

Stops executing transformations in a transformation set or in a simulator, and returns
control to the command level closing all open include files similarly as if J detects an
error. The values of arguments are printed. Useful in connection of testing if
arguments have legal values.

Example:

if(si.le.0)errexit('illegal value of variable si',si)

7.4 Using addresses in transformation sets

7.4.1 Address in transformation set

A transformation line within a transformation set can have an address. An address is
an alphanumeric expression ending with colon, e.g.

adl: write($,'t',1, "kukuu')

50

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Addresses can be utilized in goto and jump functions. Note the difference between
addresses of input programming and addresses within transformation sets: addresses
of input programming start with the semicolon (;).

goto ('address')

purpose: to continue execution of transformations from the given address
jump ('address')

purpose: to compute transformations within an internal subroutine starting with the
address and ending with back.

back
Returns control to the next transformation line following 5ump.

Note: It is not recommended to use goto according to modern computation practices.
It may be reasonable to use short internal subroutines using jump. Defining the
subroutines as separate transformation sets and using ca11 is an alternative which
seems to be equally fast to compute.

Example:

s=trans ()

i=0

goto ('koe')

write($,'t',1, 'here')
koe:write($,'t',1, 'this',7,1)
write($,'t',1, "that'")

i=i+1

if(i.1lt.4)goto('koe')

Jump ('jump')

write($,'t',1,'after jump subroutine')
return

Jump:write($,'t',1, 'in subroutine')
back

/

8 10-functions
print(argl,..,argn[,maxlines->][,data->][,row->][,file->])
Print values of variables or information about objects.

Arguments: arguments can be any J objects or values of arithmetic or logical
expressions

Options:

maxlines the maximum number of lines printed for matrices, default 100.

51
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

data data sets. If data option is given then arguments must be ordinary real
variables obtained from data.

row if atextobject is printed, then the first value given in the row option gives the
first line to be printed. If a range of lines is printed, then the second argument must be
the negative of the last line to be printed (e.q. row->(10,-15)) .Note that nrows
function can be used to get the number of rows.

file the file name as a character variable or a character constant. Redirects the
output of the print function to given file. After printing to the file, the file remains
open and must be explicitly closed (c1ose(‘file”)) if it should be opened in a different
application.

For simple objects, all the object content is printed, for complicates objects only
summary information is printed. print (Names) Will list the names, types and sizes of
all named J objects. The printing format is dependent on the object type.

*** The generated output does not look yet nice
read(file,format[,objl,..,ob]jn])

Reads real variables or matrices from a file. If there are no objects to be read, then a
record is bypassed.

Arguments:

file the file name as a character variable or a character constant

format:

'p' unformatted (binary) data

'pn' unformatted, but for each record there is integer for the size of the record
'pi' binary format (without record structure), e.g. created with Matlab.

'bis' binary data consisting of bytes, each value is converted to real value (the only
numeric data type in J)

" (...) ' aFortran format
$ or'+' the * format of Fortran

Note: Use ask Or askc to read values from the terminal when reading lines from an
include file.

write (file, format,vall,..,valn[, tab->]) I case[1/5]

Writes real values to a file or to the console

52
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Arguments:

file: variable s (indicating the console), or the name of the file as a character
variable or a character constant, or variable $suffer

format:
s indicates the ™' format of Fortran, works only for numeric values.
A character expression, with the following possibilities:

A format starting with o' will indicate binary file. Now 'v' indicates ordinary
unformatted write, later there will be other binary formats

A Fortran format statement, e.g. (~the values were ~,4f6.0), With this format
pure text can be written by having no object to write (e.g.
write('out.txt','(~kukuu~)'))

For these formats, other arguments are supposed to be real variables or numeric
expressions. If they are not, then just the real value which is anyhow associated with
each J object is printed (usually it will be zero).

tab If format is a Fortran format then, tab option indicates that sequences of spaces
are replaced by tab character so that written text can be easily converted to Ms Word
tables.

"+ tabulation format, then the write -function is

write(file,'t',tl,vall,t2,val2,..,tn,valn[,tab->]) !
case[2/5]

Positive tab position values indicate that the value is written starting from that
position, negative tab positions indicate that the value is written up to that position.
The values can be either numeric expressions or character variables or character
constants. Tab positions can be in any order.

tab option indicates that sequences of spaces are replaced by tab character so that
written text can be easily converted to Ms Word tables.

Tyt width format, then the write function is

write(file, 'w',wl,vall,w2,val2,..,wn,valn[, tab->]) !
case[3/5]

Positive w-value indicates that the value is right-justified into field of that length,
negative w-values indicate that the value is left-justified. The value can be either
numeric or character expression.

53
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

In both 't" and 'w' format with integer w-value, numeric values are converted into
character expression with 8 characters. This special formatting drops unnecessary
decimal points, leading and ending zeros, and will give as much precision as can be
obtained using 8 characters. If less than 8 characters are needed, then one can use
shorter fields than 8 characters.

A decimal w-value works similarly as f-format of Fortran, thus w-value 8.2 is
equivalent to f8.2. For technical reasons, the format with zero decimals but with
decimal point included must be given with w-value having decimal part .01, e.g. w
value 5.01 is equivalent to 5.0. Note that writing with zero decimal using e.g.
5,nint (value) Will drop also the decimal point (corresponding to 1 format of
Fortran).

When first write to a file is done, then the file will be opened. If the file already exists
then J asks if the old file can be deleted. Note that before answering you can rename
the file. In that case the old file will be saved even if you answer 'y’

tab option indicates that sequences of spaces are replaced by tab character so that
written text can be easily converted to Ms Word tables.

write (file, text object) !case[4/5]
A text object can be written into a file using this form of write function.
Writing into $Buffer I case[5/5]

If variable sBuffer is used as the £i1e argument, then different write —function calls
can put information on the same line. Writing into sBuffer has the following logic.
Other parts of J consider sBuffer as real variable. The output buffer can be
initialized by giving value zero to sBuffer (i.e. giving command $Buffer=0), this is
the situation initially. One can write onto the bufferusing s, (...)', 't', or

'w' -formats. sand ' (...)' formats will also initialize the buffer first, so only
't',and 'w' formats can be used to collect buffer in several parts. After writing into
the buffer, the real variable ssufrfer gets the current length of the output. The current
output buffer can be written into file using either

write(file,$Buffer)

or sBuffer can be used similarly as character variables in writing with 'w' or 't'
format, e.g.

write($,'t',1, $SBuffer, $SBuffer+2, '"kukuu')

In the above first sBuf fer indicates the current content of the buffer. In the tab value
sBuffer+2 indicates that the tab position is two characters past the buffer length.

Note: You can put character information into the format (to put apostrophe within
character constant use (~),see Character constants and variables).

54
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Examples:

dir="d:\J\"'
write('"dir"example.out', ' (~the values were ~,4£f4.0)"',@values)

close(file)
Closes an open file

Argument: character variable or constant telling the name of an open file. The file has
been created and opened with write, print Or save functions.

exist(file)

Tests if a file exist

Argument: character variable or constant telling the name of the file

Function returns value 1 (True) if the file exists and O (False) if the file does not exist.
delete(file)

Deletes an existing file. If the file is open it will be closed prior to deleting. If the file
does not exist, an error will be returned.

Argument: character variable or constant telling the name of a file.

Note 1: Function delete is also used to delete objects. For details, see Deleting
objects.

ask (varl,..,varn[,default->][,g->][,exit->])
Ask values for variables while reading commands from an include file.

Arguments: 0-n real variables (need not exist before)

Options:

default default values for the asked variables

q text used in asking

exit if the value given in this option is read, then the control returns to

command level similarly as if an error would occur. If there is no value given in this
option, then the exit takes place if the text given as answer is not a number.

If there are no arguments, then the value is asked for the output variable, otherwise
for the arguments. The value is interpreted, so it can be defined using transformations.

55
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Response with carriage return indicates that the variables get the default values. If
there is no default option or the default option has fewer values than there are
arguments, then the previous value of the variable is maintained (which is also printed
as the default value in asking)

Examples: (two first are equivalent):

a=ask (default->8)
ask(a,default->8)

print (ask()+ask()) ! ask withoutargument is a numeric function
askc(chvarl, .. ,chvarn[,default->][,g->][,exit->])
Asks values for character variables when reading commands from an include file.

Arguments: 0-n character variables (need not exist before)

Options:

default default character stings

g text used in asking

exit if the character constant or variable given in this option is read, then

the control return to command level similarly as if an error would occur.

If there are no arguments, then the value is asked for the output variable, otherwise
for the arguments.

Response with carriage return indicates that the variable gets the default value. If
there is N0 default option or the default option has fewer values than there are
arguments, then the variable will be unchanged (i.e. it may remain also as another
object type than character variable).

9 Data sets

9.1 Creating a data object: data()

Data sets are created with the data function. Two linked data sets can be created with
the same function call (using option subdata and options thereafter in the following
description). A data set can be modified with editdata function. Data sets can be
linked also afterwards with the 1inkdata function.

A data set is created by a data function

d=data (read->[,in->] [, form->] [,maketrans->]
[, readfirst->] [, trans->] [,keep->] [,0bs->]

56
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

[,£filter->] [, reject->] [,subdata->][,subread->]
[,subin->] [, subform->] [, submaketrans->]

[, subkeep->] [, subobs->] [,nobsw->] [,nobswcum->] [,ocbsw->]
[,duplicate->] [,0ldsubobs->] [,o0ldobsw->] [,nobs->]

[,buffersize->][,par->])

Output: Data set to be created. If there is no output then the default is $patas.

Options:

read Variables read from the input file

in input file or list of input files. If no file given, data is read from the following
input paragraph. If either of read or in option is given, then both options must be
present.

form format, default is '=' format of Fortran, this can be indicated explicitly by s, 'v'
Is binary. Any general Fortran format can be given as character constant or variable
(e.9. ' (4f4.1,1x,£4.3)").

maketrans transformations computed for each observation when reading the data

readfirst variables read from the first line of the input file, if no variables are
given, then anyhow first line is read and printed (a text header)

trans transformation set associated with the data set when data set is
used later, does not have effect in making the data, and can be given later with
editdata function.

keep Variables kept in the data set, default: all read variables plus the output
variables of maketrans transformations.

obs Variable which gets automatically the observation number when working with
the data, variable is not stored in the data matrix, default: ops. When working with
hierarchical data it is reasonable to give obs Vvariable for each data set.

filter logical or arithmetic statement (nonzero value indicating True)
describing which observations will be accepted to the data set. Maketrans-
transformations are computed before using filter. Option £ilter can utilize
automatically created variable Record which tells which input record has been just
read. If observations are rejected, then the Obs-variable has as its value number of
already accepted observations+1.

reject logical or arithmetic statement (nonzero value indicating True)
describing which observations will be rejected from the data set, if fi1ter option is
given then reject statement is checked for observations which have passed the filter.
Option reject can utilize automatically created variable Record which tells which
input record has been just read. If observations are rejected, then the Obs-variable has
as its value number of already accepted observations+1.

57
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

subdata the name of the lower level data set to be created. This option is not
allowed, if there are multiple input files defined in option in.

subread,....subobs SUb data options similar as read..obs for the upper level data.
(subform->'bgaya' Is the format for the Gaya system)

nobsw A variable in the upper data telling how many subdata observations there is
under each upper level observation, necessary if subdata option is present.

nobswcum A variable telling the cumulative number of subdata observations up
to the current upper data observation but not including it. This is useful when
accessing the data matrix one upper level unit by time, i.e., the observation numbers
within upper level observation are nobswcum+1, .., nobswcum+nobsw

obsw Variable in the subdata which automatically will get the number of
observation within the current upper level observation, i.e. obsw variable gets values
from 1 to the value of nobsw-variable, default is ' obswsobs variable’.

duplicate->(duplicates-transformations,duplicate-transformations) The
two transformation set arguments describe how observations in the subdata will be
duplicated. The first transformation set should have pup1icates as an output variable
so that the value of pup1icates tells how many duplicates are made (0= no
duplication). The second transformation set defines how the values of subdata
variables are determined for each duplicate. The number of duplicate is transmitted to
the variable pup1icate. These transformations are called also when puplicate=0.
This means that when there is the dup1icate option, then all transformations for the
subdata can be defined in the duplicate transformation set, and submaketrans is not
necessary.

oldsubobs if there are duplications of sub-observations, then this option gives the
variable into which the original observation number is put. This can be stored in the
subdata by putting it into subkeep list, or, if subkeep option is not given then this
variable is automatically put into the xeep list of the subdata.

oldobsw This works similarly with respect to the initial obsw variable as
oldsubobs Works for initial obs variable.

nobs There are two uses of this option. First, a data set can be created without
reading from a file or from the following input paragraph by using nobs option and
maketrans transformation, which can use obs variable as argument. Creation of data
set this way is indicated by the presence of nobs option and absence of in and read
options. Second, if read-option is present nobs-option can be used to indicate how
many records are read from a file (it will not be equal to the number of observations in
the resulting data set, if reject or filter ispresent.. If there are fewer records in
file as given in nobs-option, no error occurs, all records are just read.

58
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

buffersize the number of observations put into one temporary working buffer. The
default is 10000. Experimentation with different values of buffersize in huge data
sets may result in more efficient buf fersize than is the default (or perhaps not).

par additional parameters for reading. If subform 0Option is 'bgaya' then par option
can be given in form par-> (ngvar, npvar) Where ngvar is the number of
nonperiodic x-variables and npvar is the number of period specific x-variables for
each period. Default values are par-> (8, 93)

data function will create a data set object, which is a compound object consisting
of links to data matrix, etc. see Data set object.

Note 1: See common options section for how data sets used in other J functions will
be defined.

Note 2: All read variables are treated as real variables.

Note 3: The in and subin can refer to the same file, or if both are without arguments
then data are in the following input paragraph. In this case data function read first
one upper level record and then nobsw lower level records.

Note 4: When reading the data the oos-variable (default ons) can be used in
maketrans-transformation and in reject-option and £i1ter-option, and the variable
refers to the number of observation in resulting data object. The variable record gets
the number of the read record in the input file, and can be used in maketrans-
transformations and in reject-and filter options. If subdata —option is given,
variable subreject gets the number of record in the sub file, and it can be used in
submaketrans-transformations and in subreject-option and in subfilter-option.

Note 5: Options nobs->100, reject->(Record.gt.100) and filter-
> (Record.le.100) result in the same data set, but when reading a large file, the
nobs-0ption is faster as the whole input file is not read.

Note 6: If no observations are rejected, obs-variable and record variable get the same
values.

9.2 Modifying an existing data set: editdata()
editdata(data_set, trans->)

Argument: data_set , a data set object

Option: trans, gives the transformation to be done for each observation when
dealing with the data. If removing existing transformation without a new one, give

trans->, O trans->0

Changes the transformation set associated with the data set.

59
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

***Coming ways to change old data sets, make new data sets from old ones, get
observation matrix from matrix made by other means. It will be possible to keep the
data in a file in cases there is shortage of memory.

9.3 Linking hierarchical data: linkdata()
linkdata (data->,subdata->,nobsw->[,obsw->])

Links hierarchical data sets.

options:

data the name of the upper level data set
subdata the name of the lower data set

nobsw the name of variable telling the number of lower level observations for each
upper level observation, now nobsw must be an existing variable.

***|t will be later possible to link data when the class variable is in the subdata.

obsw Vvariable which will automatically get the number of lower level observation

within each upper level observation. If not given, then this variable will be
obsw%obs variable of the upper data

Note 1: In most cases links between data sets can be either made using sub-options of
data function or 1inkdata function. If there is need to duplicate lower level
observations, then this can be currently made only in data function. Also when the
data for both the upper level and lower level data are read from the same file, then
data function must be used.

Note 2: When using linked data in other functions, the values of the upper level
variables are automatically obtained when accessing lower level observations. Which
is the observational unit in each function is determined which data set is given in data
option or defined using pata list.

9.4 Combining two observations in same class: crossed()
=crossed (data->,class->, trans->,keep->,dummy->[,sym])
Output: an data set

For each class defined by the c1ass variable, each observation pairs form a new
observation in the output data set. Assume that crossed is called with trans->tr and
dummy->same. sym-> option defines that for observations i and j a new observation
is formed only for i and j not both for i and j, and j and i. The algorithm can be
described

do c=1, number of classes

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

do i=first observation in class, last observation in class
$Stage=1

call transformation set tr

do j=first observation in class, last observation in class
if(i==j)then

same=1

else

same=0

endif

$Stage=2

call transformation set tr

make new observation in the output data storing variables defined in keep->
enddo over j

enddo over i

enddo over classes

This function is used in stem curves modeling to form products of residuals of
different trees in the same stand.

9.5 Utility functions for data sets

9.5.1 Extracting values of class variables: values()
=values (variable[,data->])

Gets all different values of a variable in one or several datasets into a vector.
Output: A columns vector getting different values

Argument: a data set variable (either stored in the data matrix or generated with the
associated transformations).

Option: data gives the data sets searched
Note 1. the values found will be sorted in an increasing order

Note 2. After getting the values into a vector, the number of different values can be
obtained using nco1s function.

***|_ater there will be different ways to utilize the obtained values in connection of

data sets. Now the va1ues function can be utilized e.g. in generating domains for all
different owners or regions found in data.

9.5.2 Number of observations: nobs()

nobs (dataset)

60

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014
Gets the number of observations in a data set.
Argument : a data set

Note: index function described in List functions chapter is needed when doing
transformations using the data matrix of a data object

An example of nobs and index:

Fast:

do (i, 2,nobs (dat))

write('outfile.dat','b',

matrix%dat (i, "index (x4, keep%dat)")-matrix%dat (i-1,
"index (x4, keep%dat) "))

enddo

Fast:

inx4=index (x4, keep%dat)

do (i, 2,nobs (dat))
write('outfile.dat', 'b’',

matrix%dat (i, inx4) -matrix%dat (i-1,inx4))
enddo

Slow:

do (i, 2,nobs (dat))
write('outfile.dat','b',

matrix%dat (i, index (x4, keep%dat)) matrix%dat (i-1, index (x4, keep%dat)))

enddo

9.5.3 Getting an observation from a data set: getobs()

getobs (dataset,obs|[, trans->])

Get the values of all variables associated with observation obs in data set dataset.

First all the variables stored in row obs in the data matrix are put into the
corresponding real variables. If a transformation set is permanently associated with
the data set, these transformations are executed. Then if there is trans-> option
present, these transformations are also executed.

9.6 Data set object

Data set is a compound J object created by the data function. A data set is linking
together data, variable names, case names (coming later), transformations, links to
other data sets. In the following (A) indicates that the part is created automatically,
(N) that the part is necessary and the user can give the name for the part, and (O)

61

62
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

indicates that the part may or may not exist. The name of the data set is indicated by
data.

parts:

matrixsdata (A) matrix containing the data values

keepsdata (A) variable list telling the variables in the data (columns names)
***[ater: cases (O): link to case names

prolog (O) link to initialization transformations done before starting to handle the data
trans (O) link to transformations done for each observation

epilog (O)= link to transformations done after last observation

varssdata(A) variable list merging keepsdata and outputstrans

obs (N) link to variable which will obtain the observation number automatically
(default: obs)

up (O)= link to an upper level data set whose subdata this is (e.g. stand data for the
tree data)

sub (O)= link to the lower level subdata (e.g. schedule data for the stand data)
nlink (O)=link to the variable telling the # of lower level observations

Note: matrixsdata, keepsdata and varssdata are named element objects which can
be accessed also directly.

10 Statistical functions
10.1 Basic statistics: stat()

stat(varl,..,varn[,data->] [,weight->] [, min->]
[, max->] [,mean->] [,var->] [,sd->] [, sum->]
[,nobs->] [, filter->] [, reject->] [, trans->]

[, transafter->])

Computes and prints basic statistics from data sets.

Arguments: variables for which the statistics are computed.
Options:

data (ata sets, see section Common options for default

63
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

weight gives the weight of each observations if weighted means and variances
are computed. The weight can be given in form of transformation or it can be a
variable in the data set

min defines to which variables the minima are stored. If the value is character
constant or character variable, then the name is formed by concatenating the character
with the name of the argument variable. E.g. stat (x1,x2,min->"'pien%") Stores
minimums into variables pien%x1 and pien%x2. The default value for min IS 'min%".
If the values of the min option are variables, then the minima are stored into these
variables.

max Maxima are stored, works as min

mean Mmeans are stored

var variances are stored

sd standard deviations are stored

sum Sums are stored, (note that sums are not printed automatically)

nobs gives variable which will get the number of accepted observations, default is
variable 'nobs'. If all observations are rejected due to filter or reject option, then an
error occurs unless nobs option is given (utilizing the nobs variable the user can
control how the execution continues)

trans transformation set which is executed for each observation. If there is a
transformation set associated with the data set, those transformations are computed
first.

filter logical or arithmetic statement (nonzero value indicating True)
describing which observations will be accepted. Trans-transformations are computed
before using filter.

reject logical or arithmetic statement (nonzero value indicating True)
describing which observations will be rejected, if £i1ter -option is given then reject

statement is checked for observations which have passed the filter.

transafter transformation set which is executed for each observation which has
passed the filter and is not rejected by the reject -option.

stat prints min, max, means, sd and sd of the mean computed as sd/sqrt(number of
observations)

**|f the value of a variable is greater than or equal to 1.7e19, then that observation is
rejected when computing statistics for that variable.

Example:

64
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

stat (area,data->cd, sum->bon20, filter->(site.ge.18.5))
stat (ba,data->cd,weight->area)
stat (vol,weight->(1/dbh***2))

10.2 Covariance matrix: cov()

cov(varl,..,varn[,data->] [,weight->] [, filter->]
[, reject->] [, trans->] [, transafter->])

Computes variance —covariance matrix .

Arguments: variables for which the variances and covariances are computed.

Options:

data (ata sets, see section Common options for default

weight gives the weight of each observations if weighted means and variances
are computed. The weight can be given in form of transformation or it can be a
variable in the data set

trans transformation set which is executed for each observation. If there is a
transformation set associated with the data set, those transformations are computed
first.

filter logical or arithmetic statement (nonzero value indicating True)
describing which observations will be accepted. Trans-transformations are computed
before using filter.

reject logical or arithmetic statement (nonzero value indicating True)
describing which observations will be rejected, if £i1ter option is given then reject
statement is checked for observations which have passed the filter.

transafter transformation set which is executed for each observation which has
passed the filter and is not rejected by the reject option.

**Currently the cov function does not print the matrix, it can be printed using print
function.

10.3 Correlation matrix: corr()

corr(varl,. ,varn[,data->] [,weight->] [, filter->]
[, reject->] [, trans->] [, transafter->])

Computes the correlation matrix. Arguments and option are as in the previous cov
function. If a variable has zero variance, the correlation with the same variable is
defined to be one and correlations with other variables are zero.

65
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

10.4 Classifying data: classify()

classify([varl,..,varn] [,data->] ,x->[,xrange->] [,dx->]
[,classes] [,z->] [, zrange->] [,dz->] [,mean->]
[,trans->] [,filter->] [, reject->] [, transafter->])

Classifies data with respect to one or two variables, get class frequencies and means
of argument variables

Output: a matrix containing class information (details given below)

Arguments: variables for which class means are computed.

Options:

data data sets used, if option is not given default data sets are used

X the first variable defining classes

xrange->(min, max) defines the range of x variable and class width if several values
of x variable are put into the same class. If xrange is not given all values of the x

variable define its own class.

dx defines the class width for a continuous x variable. If dx is not given, range is
divided into 7 classes.

classes number of classes, has effect if dx is not defined in xrange

z the second variable defining classes in two dimensional classification.
zrange-> (min, max) defines the range and class width for a continuous z variable.
dz defines the class width for a continuous z variable.

mean If z variable is given, class means are stored in a matrix given in the mean
option

trans transformation set which is executed for each observation. If there is a
transformation set associated with the data set, those transformations are computed
first.

filter logical or arithmetic statement (nonzero value indicating True)
describing which observations will be accepted

reject logical or arithmetic statement (nonzero value indicating True)
describing which observations will be rejected, if £i1ter option is given then reject
statement is checked for observations which have passed the filter.

66
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

transafter transformation set which is executed for each observation which has
passed the filter and is not rejected by the reject option.

#Operation:

If z variable is not given then first row both in printed output and in the output matrix
(if given) contains class means of the x variable. In the output matrix the last element
Is zero. Second row shows number of observations in class, and the last element is the
total number of observations. Third row shows the class means of the argument
variable. The fourth row in the output matrix shows the class standard deviations, and
the last element is the overall standard deviation.

If z variable is given the first column shows the class means of z variable.

10.5 Linear regression: regr()

10.5.1 Computing the regression function: regr()

regr(y,x1,. ,xn[,data->] [,noint->] [, trans->]
[,filter->] [, reject->] [, transafter->])

Computes a linear regression function.

Output : a regression object, utilized through value, coef, se, rmse, mse,r2 functions
Arguments: y-variable, x-variables (not including constant term)

Options:

data data sets used

noint intercept is not included (default is to include)

trans transformation set which is executed for each observation. If there is a
transformation set associated with the data set, those transformations are computed

first.

filter logical or arithmetic statement (nonzero value indicating True)
describing which observations will be accepted

reject logical or arithmetic statement (nonzero value indicating True)
describing which observations will be rejected, if £i1ter option is given then reject
statement is checked for observations which have passed the filter.

transafter transformation set which is executed for each observation which has
passed the filter and is not rejected by the reject option.

67
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

10.5.2 Using the regression object:
value(),coef(),se(),mse(),rmse(),r2(), nobs(), len()

When a regression object has been created with regr function, it can be utilized using
the following functions.

value (regr_object[,x1,..,xn])

Computes the value of the regression function. If the regression object is the only
argument, then the current values of the independent variables are used. If the values
of the independent variables are given as arguments, they are used. They must be in
the same order as in the regr function which created the object.

coef (regr_object,xvar)

Gives the value of the coefficient of a x-variable.

Note: coef (regr object, 1) returns the intercept

se (regr_object, xvar)

Gives the estimated standard error of the coefficient of a x-variable.

Note: se(regr object,1) returns the standard error of the intercept.

mse (regr_object)

Returns the MSE of the regression.

rmse (regr_object)

Returns the RMSE of the regression

r2 (regr_object)

Returns the R? of the regression

nobs (regr_object)

return number of observations used to compute the regression

len(regr object[,any->])

return the number of parameters in the regression (including intercept)

Option

68
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

any len returns value-1 if argument is not legal object for 1en (without any-> an
error occurs)

*** Functions for accessing F and p values will be added when needed.
10.6 Smoothing spline: smooth()

A smoothing spline can be computed with smooth function. This function is using an
algorithm gcvspl from Netlib

10.6.1 Smoothing spline directly from data

For small data sets smoothing spline can be computed using each value of the x
variable as a knot point.

=smooth (y,x, [,data->] [,variance->] [,modeldf->]
[,degree->][,wish->])

Output: a smoothing spline object, can be used through vaiue (output, x), and
parameters of the fit can be accessed by param (output, param index)

Arguments: dependent variable, independent variable

Options:

data data sets used

variance Variance of each observation (weight will be inverse of variance). Can
be a variable or statement function.

modeldf effective degrees of freedom used for model parameters, if not given
then the generalized cross validation value is minimized, and the effective degrees of

freedom is obtained as an output parameter which can be accesses through
param (output, 3) .

degree degree of polynomial used, feasible values are 1,3, ... corresponding to
linear, cubic, etc functions..If even value is given then it is turned into the nearest
lower value. Default is degree->3.

wish->(x1,y1,wl,.., xn,yn,wn) gives wishes for the points through which the spline
should go. For each triplet (xi.yi,wi) and artificial data point with x value xi and y
value yi and weight wi is added to the data. The larger is the weight the closer the
smoothing spline will be to the point. Weight 1 is the weight for one observation.

The parameters of the fitting are printed, and they can be accessed through param
function:

param (output, 1) =Generalized Cross Validation Value

69
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

param (output,2) = Mean Squared Residual

param (output, 3) =Estimated df for the model (=modeldf , if this option is given)give
param (output, 5) =Estimated true MSE

param (output, 6) =Gauss Markov variance

param (output, 7) = humber of data points

*** Currently this does not work if the same x-value appears several times. In that
case the smoothing spline can be computed by first classifying the data.

10.6.2 Smoothing spline from classified data

For large data sets the smoothing spline can be computed by first computing class
means using classify function, and the computing the smoothing spline using class
means as data point.

=smooth (class_matrix[,variance->] [,modeldf->] [,degree->]
[,wish->] [, min->] [,max->] [,maxiter->][,iterations->])

Output: a smoothing spline object, can be used through va1ue function

Arguments: class matrix IS a matrix of class means generated by classify
function.

Options:

variance Variance of each observation (weight will be inverse of variance). Can
be a variable or statement function. It is taken automatically into account that the
variance of the class mean of the y variable is inversely proportional to the number of
observations in the class.

modeldf, degree See above (smooth function)
wish->(x1,vyl,wl, .., xn,yn, wn) see above (smooth fUﬂCtiOﬂ)

min->(fmina [, fminb]) The required lower bound for the function. If only one
value (fmina) IS given then after obtaining the initial smoothing spline it is checked
if the value of spline if smaller than fmina and if it is, the y-value of the point is
replaced with fmina, and the smoothing spline is computed again. It may, however,
be that the values of the smoothing spline are not smaller than fmina. If value fminb
IS given (fminb<fmina), then the y values are replaced with fmina-(iteration_count-
1)*(fmina-fminb), and the procedure is repeated until four iterations.

max—> (fmaxa [, fmaxb]) The required upper bound for the function. Works as min
option.

70
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

maxiter give the maximum number of iterations to get the function to obey min or
max constraints, default is 6.

iterations gives the variable which obtains the used number of iterations. Can be
useful to stop automated iterations to look more closely to problematic cases.

**Note that min and max options do not yet work for smoothing data.

11 Linear programming (JLP functions)

JLP is a linear programming package described in Lappi (1992). J is designed to
substitute this package. The linear programming J functions are called JLP functions.
JLP functions are designed to solve efficiently (fast and in a small computer memory)
planning problems of the following type. The plan is made simultaneously for a
number of treatment units (e.g. forest stands). A number of treatment schedules is
derived for each treatment unit. Treatment units can also be called calculation units to
indicate that they may result from grouping similar treatment units together. It is
hereafter expressed that schedules are simulated, but JLP does not care how the
treatment alternatives are generated. Each schedule is associated with a vector of input
and output variables over time. For simplicity these variables will be called output
variables. The decision maker is interested in the aggregated output variables, i.e., in
the sums of variables over the treatment schedules. Treatment schedules can also be
aggregated within some domains, i.e., in subsets of calculation units.

It is assumed that the goals of the decision maker can be described as a linear
programming optimization problem. For instance, we may want to maximize net
present value of future incomes, subject to constraints that the income level is
nondecreasing in each subregion and the total volume after planning period is above a
minimum level. For the general background for using linear programming in
management planning see, e.g., Kilkki (1987) and Dykstra (1984). In this manual, it is
assumed that the reader is familiar with the basic properties of linear programming.

In addition to the aggregated output variables, the problem formulation may contain
other variables whose values are determined in the optimization process. For instance,
a goal programming problem (see, e.g., Steuer 1986) includes variables describing
how much aggregated output variables deviate from target values, and the utility
model of Lappi and Siitonen (1985) includes variables for consumption, savings and
loans.

See Lappi (1992) for the background of the linear programming as used in J.

J optimization example with output explained is introduced in chapter 11.12 JLP
examples.

11.1 Optimization problem without factories

Mathematically the optimization problems considered can be described as follows.
Let us first define a linear programming problem without assuming domains for
constraints. An optimization problem can be presented as:

71

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

P q
Max or Min zy = > agex + O boize (1)
k=1 k=1

subject to the following constraints:

where

m
ni
wij
Xy
Xk
Zk
Atk

buk
r

A

p q
¢ < Zathk +thkzk <G, t=1..,r (2)
k=1 k=1
m n,‘ B
xk—ZZxZWi]:O, k=1...,p (3)
i=1j=1
N
dw=Ai=1...m 4
j=1
w; 20 forall iand j (5)
720 fork=1,..,q (6)

number of treatment units

number of management schedules for unit i

the weight (proportion) of the treatment unit i managed according to management
schedule j

amount per unit area of item k produced or consumed by unit i if schedule j is
applied

= obtained amount of output variable k, k=1,...,p

= an additional decision variable, k=1,...,q

fixed real constants for t=1,...,r, k=1,...,.p

fixed real constants for t=1,...,r, k=1,...,q

number of utility constraints

area of unit i

The problem is solved by finding proper values for the unknown variables w;;, x; and

Zk.

The constraints of form (2) are for the aggregated variables and other decision
variables of which the decision maker is interested. These constraints will be called
utility constraints. Term ‘constraint’ without qualifications refers later to the utility
constraints. Constraints (3) define the aggregated output variables x; as the sums over

the calculation units. Coefficients x,ij are known constants produced by the simulation
system. The constraint (3) can be equivalently written as:

72
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

m n[»
X, = ZZ)C%WU-, k=1,...,p (7)
i=1j=1

The less intuitive form is used in (3) in order to follow the linear programming
convention that the right hand side is always a constant. Depending on the context,
term x-variable refers either to an aggregated x; -variable defined in (3) or in (7), or to

constants x, .

Constraints (4) are so called area constraints saying that the areas under different
schedules add up to the total area of the stand. If coefficients x;/ are expressed as the
total amount in the unit (instead per area), then w;;’s are proportions and each area is
one. A variable wj; is called a w-variable or a weight. A variable z is called a z-
variable. W-variables and z-variables are decision variables by which we can fix a
possible solution. Even if aggregated x, variables are formally unknown variables of
the optimization problem, their values can be trivially computed from Eq. (7) if the
values of w-variables are known. Z-variables and (aggregated) x-variables are utility
variables that determine how good the solution is. As described, e.g., by Kilkki
(1987), all variables in a linear programming problem can be interpreted as variables
in an implicit utility model. . It is assumed in the above problem formulation that the
identity of management units is preserved throughout the planning horizon. Thus the
planning model can be classified as type Model | in the Model 1 / Model 11
terminology (see, e.g., Dykstra 1984).

The problem is a standard linear programming problem (some simple technical tricks
may be needed depending on what is meant by 'standard’), and thus any linear
programming software can be used to solve it.

A domain specific objective function or constraint can be defined in the above
formulation by defining x,ij to be zero if unit i does not belong to the intended
domain. The domain specifications are made explicit in the following formulation. Let
D¢ denote a subset of units (i.e. a subset of the set {1,...,m}) that are used on row ¢.

Domains for different rows can be equal. Then a linear programming problem with
domain specifications is:

p q
MaX or M|n zZ0 = ZakakDO +Zb0kzk’ (8)
k=1 k=1
subject to:
J4 q
¢ SZathth +thkzk <G, t=1,...r €)]
k=1 k=1

}’li B
XD, ~ Z Zx,lcjwlj =0 , k=1...,p, t=1,...,r (20)
ieD,; j=1

73
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Zi:vviJ:A,i:l,...,m (11)
j=L

w; 20 forall iandj (12)
720 fork=1,..,q (13)

It is thus assumed that aggregated output variables appearing in the same constraint
are all for the same domain. X-variables from different domains can be included in the
same constraint using additional z-variables, as will be described later. Z-variables are
always assumed to be global. Variables x;;, will be called domain variables if it is

emphasized that the summation is over a given domain.

The user of JLP functions needs only to define objective function (1) or (8) and the
utility constraints (2) or (10), and J takes care of the other constraints utilizing the
special structure of the problem.

Ordinary linear programming problems are problems which contain only z-variables.

11.2 Optimization problem including factories

In a factory problem, the transportations costs of different timber assortments at
specified time periods and capacities of factories at the same time periods are included
in the problem definition. For instance, the net present value can be maximized
subject to capacity constraints and sustainability constraints.

Mathematically the optimization problems including factories can be defined as
follows

F

p_F P
Max or Min z, —Z&kak+zb0kzk+zzaokkaf +2 > BVa (14)

k=1 f=1 k=1 f=1
subject to the following ut|I|ty constraints

p
sZat +thkzk+22atkkaf+ZZﬂtkfykfSCt, t=1...,r (15)
k=1

k=1 k=1 f=1 k=1 f=1

and technical constraints

—Zzi:x;f{w,j:o, k=1,...,p (16)

i=1=1

_nziwij —Aji=1...m 17)

74
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

m

X¢ — > % =0, (k,f)eR (18)
i=1

Yo =D 7a%e =0, (k,f)eB (19)
i=1

DX =2 xiw; =0, i=1...m, keK (20)

f=1 [

W, >0, i=1..,m j=1..,n, 720 fork=1,..,q9
Xli(f ZO,(k, f)eR
xi >0,k eK (21)

where m, nj, wij, x;g Xk, zk, atk, bek, v, A as described in the chapter 11.1
Optimization problem and

a, = fixedreal constants for t=for t=0,...,r, k=1,....p, f/=1,....F

B = fixedreal constants for t=for t=0,...,r, k=1,....p, f/=1,....F

Xy, = X, -variable transported from unit i to factory f

yi = utility obtained when a forest variable k is transported to factory f taking into

account the transportation costs
utility when one unit of forest variable k is transported from treatment unit i to

7li<f

factory f, the transportation cost is taken into account
F = number of factories
R = setof (k, f) such thatey, >0 or S, >0 for somet
B = setof (k, f) such that 8, >0 for some t
K = setof suchkthat o, >0 or g, >0 for some tand f

The meaning of different constraints:

Constraints (16) and (17) have the same meaning as constraints (3) and (4) in the
chapter 11.1 Constraint (5) states that forest variable k assigned to factory f is
obtained by adding up all standwise assignments of variable k into factory f.
Constraint (19) tells that transportation cost of forest variable k to factory f is obtained
by summing up standwise transportation costs. Constraint (20) tells that all of forest
variable k is transported to factories. Note that constraint (21) is not standard linear
programming constraint, because it constrains the values of the problem coefficients,

m . -
not variables. Note that taking into account constraint (19), S Y = z Bt Vit X -
i=1

Thus multiplying y,; for each k and f by a constant and dividing each g, by the same

constant we can get an equivalent problem. Thus we can assume without loss of
generality that each S, is one. This assumption is made in J but the formulas are

presented below without this assumption.

75
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Usually vy, -variables appear in the objective row as a part of the definition of the net

present value. When trying to understand the formulas, it might be easier to consider
that y,is the total discounted transportation cost for variable k and y,, is the

discounted per unit transportation cost when variable k is transported from unit i to
factory f. When the also the utility of having variable k transported to factory f is
taken into account in y;-and .. we get more efficient computations and more

compact problem definition in J. Note that we can have different factory groups for
different timber assortments by setting properly zeroes to alfas and betas.

In typical problems the utility constraints including x, are of form x,, <C which

states that the capacity of factory f has a upper bound C for a period-specific timber
assortment.

The user of JLP functions must specify the objective (14) and the utility constraints
(15) and give information how the program can compute coefficientsy,. . The

program takes care automatically of the constraints 17-20. In problems including
factories you can define only maximization problems. The minimization problem can
be turned into maximization by multiplying the objective function by -1.

11.3 Solution algorithm

Function §1p is using the algorithm of Lappi (1992), based on the generalized upper
bound technique of Dantzig and VanSlyke (1967). Function is using linear algebra
subroutines of Prof. R. Fletcher based on Fletcher (1996)

Solution algorithm for the optimization problem including factories is described in
Lappi and Lempinen (2014).

11.4 J functions related to JLP

In order to use JLP functions user should be familiar with at least data, 1inkdata,
trans and print functions.

11.5 Problem definition: problem()

=problem([repeatdomains->])

/

Define a Ip problem for 51p function.

Output: a problem definition object

76
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Option: repeatdomains, if this is option is given then the same domain definition can
be in several places of the problem definition, otherwise having the same domain in
different places causes an error (as this is usually not what was intended). If the same
domain definition is in several places is slightly inefficient in computations, e.g. §1p-
function computes and prints the values of x-variables for each domain definition
even if the same values have been computed and printed for earlier occurrence of the
domain definition.

The problem definition paragraph can have two types of lines: problem rows and
domain rows. Examples of problem definitions showing the syntax.

pr=problem/() lordinary lp-problem
T*z2+6*z3-z4==min

2*z1+6.1*%z2 >2 <8+b !both lower and upper bound is possible
(atlog (b)) *z5-2z8=0

-z7+2z1>8

/

prx=problem/() ! timber management planning problem
All:

npv.0==max

sitetype.eqg.2: domain7:

income.2-income.1>0

/

In the above example domain7 is a data variable. Unit belongs to domain if the value
of the variable domain7 is anything else than zero.

Currently the objective row must be the first row. The objective must always be
present. If the purpose is to just get a feasible solution without objective, this can be
obtained by minimizing a z-variable which does not otherwise appear in the problem
(remember z-option in the 31p-function.

In problems with x-variables it is possible to maximize or minimize the objective
without any constraints. In factory problems this would also be quite straightforward
to implement, but it does not come as a side effect of computations as in the case of
maximization of x-variables, and thus it has not been implemented. The maximization
of a factory objective without constraints can be obtained by adding to the problem
constraints which require that the amounts of transported timber assortments to
different factories are

Function problem interprets the problem paragraph, and extracts the coefficients of
variables in the object row and in constraint rows. The coefficients can be defined
using arithmetic statements utilizing the input programming "-sequence or enclosing
the coefficient in parenthesis. The right hand side can utilize arithmetic computations
without parenthesis. The values are computed immediately. So if the variables used in
coefficients change their values later, the problem-function must be computed again
in order to get updated coefficients. Note that a problem definition does not yet define
a JLP task. Final interpretation is possibly only when the problem definition and
simulated data are linked in a call to 51p function. At the problem definition stage it is
not yet known which variables are z-variables, which are x-variables and which are
factory variables (see Lappi 1992).

77
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Note that ‘<’ means less or equal, and ‘>’ means greater or equal. The equality is
always part of linear programming constraints.

The logic of j1p-function is the same as in the old JLP software. There is one
difference which makes the life a little easier with J. In J the problem definition can
use c-variables which are defined in the stand data. These are used similarly as if they
would become from the x-data. It does not make any sense to have on a problem row
only c-variables, but there can be constraints like

vol#1-vol#0>0

where vo1#0 is the initial volume, i.e. a c-variable, and vo1#1 is the volume during
first period. In old JLP these initial values had to be put into the x-data.

Note also that problem definition rows are not in one-to-one relation to the constraint
rows in the final Ip problem. A problem definition row may belong to several
domains, thus several Ip-constraint rows may be generated from one problem
definition row. The problem obtained by taking multiple domains in domain
definition rows into account is called ‘expanded problem’.

Domain definitions describe logical or arithmetic statements indicating for what
management units the following rows apply. Problem will generate problem definition
object, which is described below.

Note 1: Only maximization is allowed in problems including factories. To change a
minimization problem to a maximization problem, multiply the objective function by
—1.

*** \We may later add the possibility to define also minimization problems.

Note 2: If optimization problem includes factories (see chapter 11.2 Optimization
problem including factories), there have to be vy, variables in the objective function

or at least in one constraint row. Example of problem definition including factories
can be found in chapter 11.12 JLP Examples.

Note 3: An ordinary linear programming problem contains only z-variables.
Note 4: It is not necessary to define problem function if the problem includes only z-
variables. In 31p function you can use zmatrix-> option instead of problem->

option. For more information see chapter 11.8 Solving a large problem with z-
variables: jlp().

11.6 JLP problem definition object

generated with: problem

used in: 51p

78
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

JLP problem is a compound object created by prob1em-function (similar to JLP
problem definition) for defining Ip-problems.

#Note: all objects created by prob1em function can be printed using
print (?23sproblem)

parts.

rowssproblem is a text object containing the rows of the problem definition. Note:
31p —function creates vector rowssoutput containing values of constraint rows in
solution.

domainssproblem is a text object containing the domain definitions or names used in
the problem. A domain definition appears in the text object only once even if it has
been in several places in the problem definition (see the repeatdomains-option
above) If there are no domain definitions in the problem, then domainssproblem
contains row ‘All’.

domainvarssproblem variable list containing the variables used in the domain
definitions

varssproblem variable list containing the variables used in the problem definition

rhssproblem column vector containing the lower bound for each row. Note: a
technical value is given for objective row.

rhs2%problem vector containing the upper bounds for each row. Note: a technical
value is given for objective row.

All coefficients of the constraints are in a packed format.

Note: the rhs- vectors can be modified (by arithmetic or matrix operations) before and
between calls of the j1p-function utilizing the same problem definition.

11.7 Solving a problem: jlp()

There are two versions of j1p function call: one with probiems-> option for problems
defined by prob1em function and the other with zmatrix-> option for large ordinary
linear programming problems with z-variable coefficients defined by matrix.

A Ip problem defined by probiem function can be solved using 51p function:

[=]1Jlp (problem->[,data->][,z->] [, trans->] [,subtrans->]
[,tole->][,subfilter->] [,subreject->][,class->]
[,area->] [,notareavars->] [,print->] [, report->]

[, maxiter->][,test->][,debug->])

Output: Necessary for factory problems, otherwise optional. If output is given
then function generates several matrices and lists associated with the solution (e.g. the

79
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

values of the constraint rows, the shadow prices of the rows, the values of the z-
variables, the reduced costs of z-variables, the sums of all x-variables of the data in
all domains and their shadow prices, lists telling how problem variables are
interpreted. See Objects for the JLP solution for more detailed description.

options:

problem problem definition generated by prob1em function

data data set describing the stand (management unit) data or the schedules data.
The unit data set must be linked to schedule data either using sub-options in the data
function or using 1inkdata function. Following the JLP terminology, the unit data is
called cdata, and the schedule data is called xdata. The §1p function tries if it can find
a subdata for the data set given. If it finds, it will assume that the data set is the
unitdata. If subdata is not found, it tries to find the upper level data. If it finds it, then
it assumes that the data set given is the schedules data. If data is not given, then the
problem describes an ordinary Ip-problem, and all variables are z-variables. If data-
option is given but no variable found in problem is in the schedules data set, then an
error occurs.

z If the data option is given then the default is that there are no z-variables in the
problem. The existence of z-variables must be indicated with z option (later the user
can specify exactly what are the z variables, but now it is not possible). The reason for
having this option is that the most jlp-problems do not have z variables, and variables
which J interprets as z-variables are just accidentally missing from the data sets.

trans transformation set which is executed for each unit.
subtrans transformation set which is executed for each schedule.

#Note that the subtrans transformations can utilize the variables in the unit data and
the output variables of trans-transformations.

#Note that transformations already associated with cdata and xdata are taken
automatically into account and they are executed before transformations defined in
trans Of subtrans Options.

*** |Later we may add the possibility to have several data sets (note that several files
can be read into one data object in the data-function)

tole the default tolerances are multiplied with the value of the to1e option (default
is thus one). Smaller tolerances mean that smaller numerical differences are
interpreted as significant. If it is suspected that jlp has not found the optimum, use e.g.
tole->0.1,tole->0.01 Or tole->10. Also in case of j1p reporting that solution
is getting worse increase the value of the to1e option e.g.set tole->10.

80
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

subfilter logical or arithmetic statement (nonzero value indicating True)
describing which schedules will be included in the optimization. If all schedules are
rejected, an error occurs. Examples: filter->(.not.clearcut) , filter-

> (ncuts.ge.5), filter->harvest (Which is equivalent to: filter-

> (harvest.ne.0)). Ifthe subfilter statement cannot be defined nicely using one
statement, the procedure can be put into a transformation set which can be then
executed using value function.

subreject logical or arithmetic statement (nonzero value indicating True)
describing which schedules will not be included in the optimization. If subfilteris
given then test applied only for such schedules which pass the subfilter test. If the
subreject Statement cannot be defined nicely using one statement, the procedure can
be put into a transformation set which can be then executed using va1ue function.

class class->(cvar, cval) Only those treatment units where the variable cvar
gets value cval are accepted into the optimization. The units within the same class
must be consecutive.

area gives the variable in cdata which tells for each stand the area of the stand. It is
then assumed that all variables of cdata or xdata used in the problem rows are
expressed as per are values. In optimization the proper values of variables are
obtained by multiplying area and per area values. Variables of cdata used in domain
definitions are used as they are, i.e. without multiplying with area. Variables which
are not treated as per area values are given with the notareavars option.

notareavars If area-> option is given then this option gives variables
which will not be multiplied with area.

print of output printed, 1 => summary of optimization steps, 2=> also
the problem rows are printed, 3=> also the values of x-variables are printed.

report the standard written output is written into the file given in report option
(.e.0. report->'result.txt'). The file remain open and can be written by several
j1p-functions or by additional write functions. Use c1ose function to close it
explicitly if you want to open it with other program.

maxiter maximum number of rounds through all units (default 10000).

test If option is present then jlp is checking the consistency of the intermediate
results after each pivot step of the algorithm. Takes time but helps in debugging.

debug determines after which pivot steps jlp starts and stops to print debugging
information to fort.16 file. If no value given, the debugging starts immediately
(produces much output, so it may be good to use step number which is close to the
step where problems started (print variable pivots at the error return). debug-

> (ipl1, ip2, ip3) indicates that debugging is put on at pivot step ip1, off at pivot ip2
and the again on at pivot ip3.

81
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

jlp is generating output (amount is dependent on the print option) plus a JLP-
solution stored in special data structures which can be accessed with special J
functions described below. In addition j1p creates three lists: zvarssproblem,
factoriessproblem and xkyksproblem.

Note: a feasible solution (without an objective) can be found by minimizing a z-
variable (remember z-option), or by maximizing a unit variable (which is constant for
all schedules in a unit).

11.8 Solving alarge problem with z-variables: jlp()

When solving problems including a large number of z-variables it is possible to feed
the coefficients as a matrix with zmatrix-> option. Unit and schedule data (c- and x-
variables) are not allowed when zmatrix-> is used.

=jlp(zmatrix->,max->|min-> [,rhs->][,rhs2->]
[,tole->][,print->] [,maxiter->]
[, test->] [,debug->])

Output: Function 3 1p generates output row vectors zvalues%output,
redcostsoutput and output column vectors rows%output, shpricesoutput. Output is
the name of the output.

options:

zmatrix Matrix containing coefficients of z-variables for each constrain row.

max Vector containing coefficients of z-variables for the objective row of a
maximization problem. Either max-> or min-> option has to be defined but not both.

min Vector containing coefficients of z-variables for the objective row of a
minimization problem. Either max-> or min-> option has to be defined and both can
be also defined. but not both.

rhs Vector containing lower bound for each constraint row. Value -1.7e37 is used
to indicate the absence of the lower bound in a row. Either or both of the bound
options (rhs->,rhs2->) has to be defined.

rhs2 Vector containing upper bound for each constraint row. Value 1.7e37 is used
to indicate the absence of the upper bound in a row. Either or both of the bound
options (rhs->,rhs2->) has to be defined.

Other options described above in chapter Solving a problem: jlp().
Note. When zmatrix-> option is used the solution is not automatically printed. Use

jlp solution objects to access solution. For more information see chapter 11.10 Objects
for the JLP solution.

82
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Some refinements may be possible which make solution of zmatrix-problems
faster. If this option will get some interest, we may try these improvements.

An example of the usage of zmatrix-> option can be found in chapter 11.12 JLP
Examples.

If a ordinary jlp-problem is solved using zmatrix-option, the solution takes much
longer. For instance, a problem with 200 treatment units and 127264 schedules and 9
utility constraints took less than 1 second cpu time using problem and data options,
but over 16 minutes when solved with zmatrix option. A similarproblem with 300
treatments units and 181640 schedules took 58 minutes with zmatrix and 1.2
seconds with our algorithm.

11.9 JLP output

31p —function prints information about problem, data and solution during problem
solving. Messages are here described in order of appearance (self-explanatory
messages are not included).

tole = value

The current value of to1e —option. Value = 1.0 if option is not defined.
number of domains = value

The number of domains in problem definition.

number of domain occurrences = Value

The number of domain definitions in problem definition, printed only if same domain
definitions appear in several places of the problem definition.

number of constraint rows in problem definition= value
number of expanded constraint rows= value

This is printed only if it is different from the previous value, which happens when
there are several domain definitions in a same row in the problem definition

Number of x-variables is printed for problems with data, and number of xkf and ykf-
variables are printed for factory problems.

If in factory problem a constraint tells that the amount of timber assortment
transported to a given factory has an upper bound but no lower bound is given, then
the lower bound zero is assumed. The constraints affected will be printed. In principle
amounts transported to factories will also otherwise be nonnegative, but for some
reason which we do not completely understand the algorithm will reach slightly better
objective values when the lower bounds are generated and these will become active.

***row, min,max,initial value, tolerance

83
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

rowindex min_value max_value initial _value tolerance_value

The smallest possible value (min_value) and the largest possible value (max_value) of
each problem row including x-variables. Initial value is the value of the row when
key schedules are selected. Factory variables (transported amounts to factories) and z-
variables are ignored when determining minimum and maximum values. Minimum
and maximum values can be used to detect infeasible rows at start, if there are only x-
variables in the row and min_value > upper bound or max_value < lower bound of
the constraint.

For rows containing only factory variables minimum and maximum values are
omitted, but initial value (key schedules and key factories selected) and tolerance are
printed.

Note: Row index O refers to the objective row.
preoptimization round N improved infeasibility by value

To find an initial solution close to feasible solution integer programming is applied
prior to the linear programming algorithm. The preoptimization is done by going
through all units twice.

initial wvalues
rowindex value

Values after preoptimization for the rows including x—variables.
*round,nonfeasible rows,pivots,obj round rows pivots value

The number of pivot operations (pivots) performed, the value of the temporary
objective function (value) and the number of nonfeasible rows (rows) in current
solution after each round in optimization before reaching feasibility. The temporary
objective function estimates the amount of infeasibility in the current solution. In one
round optimization looks over all treatment units once.

*round,pivots,obj round pivots value

The number of pivot operations (pivots) performed and the value of the objective
function (value) in current solution after each round in optimization.

regular return

JLP has found the solution and looked through all z-variables, residuals, slack and
surplus variables, schedules and factory variables without improvement in the value
of the objective function.

slow improvement

JLP has looked over all treatment units and in the last round found only a slight
improvement, which does not significantly improve the value of the objective
function.

84
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

number of explicit basic schedules schedules
unit= Unit key= key schedule basic sched= Sschedule weight= weight

The total number of basic schedules (schedules) and the weights (weight) of the basic
schedules (schedule) in each split unit (unit). The weight of key schedule
(key_schedule) in split unit can be calculated as follows:

weight of the key schedule = 1 — sum of the weights of the basic schedules in the
unit.

Notes about the solution report

The double precision value of the objective function in the solution report may
slightly differ from the single precision value of variable objective (See 11.10

Objects for the JLP solution below).

If the lower and upper bounds of a constraint row have same value it is printed in the
middle of columns ‘lower bound’ and ‘upper bound’.

The active lower or upper bounds are marked with ‘L’ and ‘U’ correspondingly.
Note: Owing to rounding errors, the constraint row value may be (slightly) illogical,
e.g. the amount of timber assortment transported to a certain factory may be negative
in a capacity constraint, or it may be tiny positive, and this can indicate that nothing is
transported to that factory. Transportations to factories are computed differently in
xkf-function, and there should appear no negative amounts of timber.

x-variables section of the report includes all x-variables in the data and in the
transformations related to the data.

11.10 Objects for the JLP solution

The variables receiving the status of the problem are:

Feasible logical variable (i.e. gets value 1 if problem is feasible, zero otherwise)
Optimal logical variable for indicating if the solution is optimal

Unbounded logical variable for indicating if the solution is unbounded

started j1p logical variable telling if 5 1p-function initialized data structures so that
inquiry functions can be used. Note that even if the problem is infeasible, these
inquiry functions return the current status of the problem solution. If the inquiry

functions are used when they cannot yet be used, an error conditions occurs.

Pivots number of pivot operations, can be used to set a good value for debug-
option in case of trouble.

85
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

objective Value of the objective function, for non-feasible problem -9.9, for
unbounded problem either 1.7e37 (for maximization) and -1.7e37 (for minimization).
This is single precision value and it may slightly differ from double precision the
value of the objective function in the solution report.

If the j1p-function is used with probiem-option, and there are z-variables in the
problem, the z-variables get the optimal z-values found in the solution.

If the problem contains x-variables and there is only one domain, the x-variables get
directly the sums of x-variables over schedules in the solution. These values will be
changed in any operations with xdata, thus using xsumsoutput matrix is safer.

Objects created when there is output for the 5 1p function.
#Note: All objects can be printed with print (2%o0utput)

#Note: column vectors can be accessed without specifying the column index (=1), but
row vectors are matrices with one row and the row index (=1) must be given when
accessing the values of the vector.

rows%output column vector containing values of the constraint rows. Note:
problem —function creates a text object rowsproblem containing the rows of the
problem definition. . The vector is generated if there are constraint rows in the
problem.

Note: the rows of the text object rows%problem and the rows of rowssoutput are not
in one to one correspondence, because the objective row is present in rows%problem
but is not include in constraint rows and as there can be several domains in the
domain definition row, each of the consecutive problem row will generate as many
constraint row as there are domain definitions.

shpricesoutput columns vector containing shadow prices of the constraint
rows. The vector is generated if there are constraint rows in the problem

rhssoutput column vector telling the lower bounds of constraints. This is not equal
to rhs $problem because objective row is included in rnssproblem and multiple
domain definitions in one row generate multiple constraint rows corresponding to one
problem row. Value -1.7E37 indicates the absence of lower bound. The vector is
generated if there are constraint rows in the problem.

rhs2soutput column vector telling the upper bounds of constraints. This is not equal
to rhs2sproblem because objective row is included in rns2sproblem and multiple
domain definitions in one row generate multiple constraint rows corresponding to one
problem row. Value 1.7E37 indicates the absence of the upper bound. The vector is
generated if there are constraint rows in the problem.

Objects created when there is output and data option

86
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

xvarssoutput List of all variables found in xdata, the variables of cdata used in
problem definition and output variables of subtrans —transformations. Note: if a
variables is already in the data and the same variable is an output of subtrans-
transformation, it appears twice in xvarssoutput, but everything is still otherwise in
order.

xsums0utput Matrix which contains as many rows as there are domains in the problem
definition. In each row there are sums of the x-variables over optimal schedules in the
same order as the x-variables are in the list xvarssoutput.Note: domains can be seen
using print (domainssproblem), and the number of domains can be accessed using
nrows-function. If there is only one one domain, the x-variables get also directly the
sums of x-variables, but these values are easily lost when making operations with the
data.

xpricesoutput Matrix which contains as many rows as there are domains in the
problem definition. In each row there are shadow prices of the x-variables in the same
order as the x-variables are in the list xvarssoutput. The shadow price of a x-variable
tells how many units the objective function would change if we get one (small) unit of
the x-variable from an outside source. Shadow prices are nonzero only for those x-
variables which appear in binding constraint rows.

xvarsproblemnsoutput List of all x-variables found in the problem. These are among
variables in varssproblem.

domainssoutput Column vector telling to which domain each constraint row
belongs.The domain definition of constraint row irow can be printed with

print (‘@domains%problem (domainss0UtpUt (irow))). The vector is generated if
there are constraint rows in the problem.

problemrowss0utput Column vector telling which problem definition row
corresponds each constraint row. The definition of constraint row irow can be
printed with print (‘@rows%$problem (problemrows%OUtpUt (irow)) ') . The vector
IS generated if there are constraint rows in the problem

Objects created when there is output and z-variables

zvaluessoutput row vector containing values of the z-variables . Note that if the
jlp-function is used with problem-option, and there are z-variables in the problem, the
z-variables get the optimal z-values found in the solution.

redcostsoutput row vector containing reduced costs of the z-variables.

Object created when there is output and z-variables are defined using problem

zvarssoutput List of z-variables found in the problem. Note: in J2.0 this list was
named as zvarssproblem: The current naming is more logical as classification of

87
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

problem variables is done in jlp function, not in problem function. Variables in
zvarss0utput are among variables in varssproblem

Obiject created in factory problems (output required)

factoriessoutput list stores factories found in optimization problem. In version J2.0
the list was named factoriessproblem

xkyksoutput list stores (transported) x, variables found in optimization problem. In
version J2.0 the list was named xkyksproblem

Note: The indexes written by the xx£-function correspond to the locations of factories
and x-variables in these lists.

11.11 Inquiry functions for the JLP solution

The following J functions can access the most recent solution.
=weights ()

Gives the number of schedules which have nonzero weight in the solution.

Note. this is usually used in combination with unit, schedcum, schedw and weight
functions.

unit (i)

Returns the unit number for the i'th schedule having a nonzero weight,
Argument: i is numeric value between 1 and weights ()
schedcum (i)

Returns the cumulative schedule number (observation number in the subdata) for the
i'th schedule having a nonzero weight,

Argument: i is numeric value between 1 and weights ()

schedw (i)

Returns the within unit schedule number for the i'th schedule having a nonzero
weight.

Argument: i is numeric value between 1 and weights ()

88
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

weight (i)

Returns the weight (proportion) for the i'th schedule having a nonzero weight,
Argument : i is numeric value between 1 and weights()

partweights ()

Returns the number of schedules which have nonzero weight in the solution but so
that the whole unit is not assigned to the schedule. In a linear programming problem
there is usually only one schedule in each unit in the solution i.e. with a nonzero
weight. Binding constraints bring in the solution schedules with weight between zero

and one. The schedules can be access with part functions.

Note. partweights () is usually used in combination with partunit,
partschedcum, partschedw and partweight functions.

*** currently partweights (unit) gives also the number of partweights in the unit,
but we are not sure if wel keep this

partunit (i)

Returns the unit number for the i'th schedule having weight between zero and one.
Argument: i is numeric value between 1 and partweights ()
partschedcum (i)

Returns the cumulative schedule number for the i'th schedule having weight between
zero and one

Argument: i is numeric value between 1 and partweights ()
partschedw (i)

Returns the within-unit schedule number for the i'th schedule having weight between
zero and one.

Argument: i is numeric value between 1 and partweights ()
partweight (i)

Returns the weight for the i'th schedule having le having weight between zero and
one.

Argument: i is numeric value between 1 and partweights ()

89
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

price%unit (iunit)

Returns the shadow price of the unit iunit.

Argument: unit (stand) number

Note: If active rhs's are nonzero the shadow prices of a units (precisely, the shadow
prices of the area constraints for units) do not generally add up to the solution. For
more detailed information see Shadow price of a treatment unit in Lappi (1992).
weight%schedcum(sched[,integer->])

Returns the weight of a schedule.

Argument: cumulative schedule number

option:

integer :the weight will be 1 for that schedule within the unit which has the largest
weight and zero otherwise

Note: weight (i) and partweight (i) return only nonzero values (precisely, weights

for basic schedules, which are nonzero except for degenerate basic schedules), but
weight$schedcum () return also zero weights

price%$schedcum (sched)
Returns the shadow price of a schedule.
Argument: cumulative schedule number

Note: for all schedules in the basis, the value of the schedule is the same as the value
of the unit given by pricesunit (unit).

price%$schedw (iunit, sched)

Returns the shadow price of a schedule within an unit
Arguments:

iunit the number of the unit

sched the schedule number within the unit

weight%schedw (iunit, sched[,integer->])

purpose: numeric function returning the weight of a schedule within an unit

90
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Arguments:

iunit the number of the unit

sched the schedule number within the unit

Option:

integer the weight will be 1 for that schedule within the unit which has the largest
weight and zero otherwise

integerschedw (iunit)

purpose: numeric function returning the within-unit schedule number of the schedule
which has the largest weight within the unit

Arguments:
iunit the number of the unit

integerschedcum (iunit)

purpose: numeric function returning the cumulative schedule number of the schedule
which has the largest weight within the unit

Arguments:
iunit the number of the unit

xkf (file)

purpose: prints for each unit the amount of x, variables transported to each factory.

Output consists of four numeric values: index of the unit, index of the forest variable,
index of the factory, and the transported amount. Factory and forest variable indexes
refer to the elements of factoriessoutput and xxyksoutput lists. The file is closed
automatically after writing. The file can be open before xkf-function (so one can write
e.g a header to this file). In this case xkf writes just after the previous text. The file
can be read into a data object following the example below. Note: if one-line header is
written into the file, data-function requires readfirst-option.

Arguments:

file variable s (indicating the console), or the name of the file as a character
variable or a character constant.

An example of using xxf -function:

;xkf:

xkf ('fout.txt"')

xkfdata=data (in->'fout.txt', read-> (iunit, xk, fact, amount))
outf=matrix (len(factories%f),len (xkykSf))

91
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

trf=trans ()

outf (fact, xk)=outf (fact, xk) +amount

/

stat (amount,data->xkfdata, trans->trf)

! stat function makes that data is gone through and
! trf-transformations are done for each observation
print (outf)

An example of using xxf -function in domain problems:

xkf ('fout.txt'")

xkfdata=data (in->'fout.txt', read->(iunit, xk, fact, amount))
ndom=nrows (domains%newprob)

;do (id, 1, ndom)

doutf"id"=matrix (len(factories%f),len (xkyk%f))
;enddo

trf=trans (input->)

getobs (cdata,iunit) !cdata is the unit data object
;do (id, 1, ndom)

if (@domains%newprob (id))doutf"id" (fact, xk)=
doutf"id" (fact, xk) +amount

;enddo

/
stat (amount,data->xkfdata, trans->trf)
print (doutf?)

Note: xkf computes timber transportations differently from the LP solution than is
computed in capacity constraints for the general report or for rowssoutput matrir;
thus the results may differ slightly owing to rounding errors.

11.12JLP examples
Example 1: Definition of a problem including factories

Stand data file sdata.dat includes coordinates and number of schedules for each
stand (coordinates are purely fictive and just an example).

sdata.dat:

SN O
~ 0~
o W o N
~ 0~
N W DN W

~ 0~

Schedule data file xdata.dat describes the amounts of timber produced in each
period if schedule is applied. The first three values represent the mount of saw log in
periods 1, 2 and 3. The last three values represent amount of pulp correspondingly.

xdata.dat:

5342,4885,12,82,28,18
856,48965,42,782,87,596
0,0,45,4878,145,568
89,7,456,78,513,181
520,30,840,8,7,60
58,654,370,6,68,40

92
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

4584,564,578,516,20,54
452,70,16,35,37,39
25,3,8,21,39,37
36,35,34,8,19,45

Stand and schedule data are read with data function and linked together with
linkdata function. Sawmills and pulp factories are introduced with 1ist function.
Coordinates, capacity and factory price of saw logs or pulp wood for each saw mill or
pulp factory are defined with properties function.

!read in stand data

sdata=data (read-> (sxcoor, sycoor,ns),in->"'sdata.dat"')

!read in schedule data

xdata=data (read-> (sawlog#l,sawlog#2,sawlog#3,pulp#l,pulp#2,pulp#3),
in->'xdata.dat"')

linkdata (data->sdata, subdata->xdata, nobsw->ns)

p=3 ! number of periods
pl=10 ! length of period

r=1.05 117.05 ! l+interest

! define discounting factors

;do(i,1,p)

df#"i"=1/r** (-pl/2+i*pl)

;enddo

costpkm=0.011 !transportation cost per km

sawlog=list (sawlog#l...sawlog#"p")
pulp=list (pulp#l...pulp#"p")

sawmill=1list (Lahti, Keuruu, Kotka)

! define variables xcoor%Lahti etc
properties (xcoor, ycoor, scapacity, sprice)
Lahti, 50,100,2000, 60

Keuruu, 100,20,3000,55
Kotka,40,200,5000, 70

/

pulpfactory=1list (Oulu,Varkaus)
properties (xcoor, ycoor,pcapacity,pprice)
Oulu,20,400,3000,45

Varkaus, 30,200,5000,40

/

Transformations are defined to compute the factory- and period-specific utility
((factory price — transportation cost) * discounting factor) which is then used in the
objective function of the problem definition. Computing is implemented with input
programming loops. The outer loop iterates over the factories (saw mills or pulp
factories) and the inner loop iterates over the periods

trans.util%$%sawlog%%ssawmill=trans ()

! each variable textl%%text2%%text3 needs to have associated
! transformation trans.textl%%..

!compute the transportation cost from coordinates
;do(i,1,len(sawmill))

93
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

cost=costpkm*sqgrt ((xcoors@sawmill (i) —sxcoor) ***2+
(ycoor$@sawmill (i) —sycoor) ***2)

'use the factory price and the discounting factor

;do(3,1,p)

util%%sawlog#"j"%$%@sawmill (i)=(sprice%@sawmill (i)-cost) *df#"j"
;enddo

;enddo

/

trans.util%$%pulp$Sspulpfactory=trans()

;do(i,1,len(pulpfactory))
cost=costpkm*sqrt ((xcoor$@pulpfactory (i) -sxcoor) ***2+
(ycoor$S@pulpfactory (i) -sycoor) ***2)

;do(3,1,p)
utils$Spulp#"j"%%Q@pulpfactory (i) =(pprice%@pulpfactory(i)-cost) *df#"j"
;enddo

;enddo

/

The problem definition consists of the objective function and the constraints. The
transformations defined above are used in the objective function, which is always the
first row in the problem. The period- and factory-specific capacity constraints are also
generated with input programming loops. There could be different capacities and
factory prices for different periods, but in this example the same capacity and price
applies for all periods.

!define the optimization problem

newprob=problem ()

! objective function
util%%$sawlog%%sawmill+util%%$pulp%$%pulpfactory==max
!capasity constraints

;do(i,1,len(sawmill))

ido(J,1,p)
sawlog#"j"%%@sawmill (i) <scapacity%@sawmill (1)
;enddo

;enddo

;do(i,1,len(pulpfactory))

;do(J,1,p)
pulp#"j"%$%@pulpfactory (i) <pcapacity%@pulpfactory (i)
;enddo

;enddo

/
Finally solve the problem with 51p function
fout=jlp (data->sdata, problem->newprob)

Example 2: A problem with z-variables

Version 1: Coefficients of z-variables defined in probiemfunction.

luen=problem /()
3*x1+x2+3*x3==max
2*x1 +x2 +x3 <2
x1+2*x2 + 3*x3<5
2*x1+2*x2+x3<6
xX2<1.7E7

/

94
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Jjlp (problem->1luen, z->)

Version 2: Coefficients of z-variables defined with zmatrix-> option.

~ SN 0~ 0~

bij=matrix (1, 3,in->)
3

~
|

4

b=matrix (4,in->) !note column vector can be read like this
,5,6,1.7E7

NN S NWO ~NOoONE DN

out=jlp (zmatrix->a,max->obj, rhs2->ub)
print (zvalues$%$out)
print (redcost%out)
print (shprice%out)

More examples at the web page http://mela2.metla.fi/mela/j/oppaat-en.htm.

12 Simulator

12.1 Defining a simulator

J includes a simulator language as a slight extension of the ordinary transformations.
Using simulator language in the simulator function, one can define a simulator.
Simulations are done using simulate function which links a simulator and data sets.
Optimal (or reasonable) treatment schedules can then be selected using JLP-functions.
The structure of the simulator function is:

12.1.1 Simulator definition: simulator()

=simulator (periods->[,period->] [,keepperiod->]
[, treevars->])

(simulator definition)
/

Output: a simulator

Options
periods number of simulation periods
period variable indicating the period during simulation, default T

keepperiod €ach node up to period xeepperiod-1 must have at least one next
function, default is the total number of periods. This option is not transmitted to

http://mela2.metla.fi/mela/j/oppaat-en.htm

95
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

simulate which has xeepperiod which shows how many periods are actually
simulated, but there is need for this option only if xeepperiod is used in simulation
and the simulator defines branches which do not reach all periods.

treevars gives the tree variables used in the simulation They can be used in the
simulator if they were vectors. The simulate function will actually make these
vectors for the simulation time. The 10adtrees function will put the values of those
tree variables which are in the tree data set linked to the stand data

The first part of the simulator paragraph is an initialization part, then there are
definitions of nodes in any order, and definitions of sub module sections in any order.
Branching structure is defined using next and branch. Next function tells which
nodes are entered in the next period, branch will add nodes to the current period. The
structure of the simulator can be best understood best by a simple example.

nper=>5

js=simulator (periods->nper, period->P)

next (grow)

if (age#0.ge.50)next (thin)

if (age#0.gt.70)next (clear)

;do(t,1,nper)

;trace (age#"t",vol#"t",out->outvars#"t")

grow::t ! node header consist of generic node name and the period
! number

age#"t"=age#"t-1"+10

vol#"t"=vol#"t-1"+25

jump ('gr#"t" l)

write($,'w',12, 'grow/period',5,P,6, 'age="',8,age#"t",5, 'vol=",8,vol#"t

")

next (grow)

if (age#"t".ge.50)next (thin)

if (age#"t".eq.50)branch (thin2)

if (age#"t".ge.70)next (clear)

'test that all output variables got values

tracetest (outvars#"t")

thin::t

age#"t"=age#"t-1"+10

vol#"t"=0.6*vol#"t-1"

write($,'w',12, 'thin/period',5,P, 6, 'age="',8,age#"t",5, 'vol=",8,vol#"t
")

next (grow)

thin2::t

age#"t"=age#"t-1"+10

vol#"t"=0.6*vol#"t-1"

write($,'w',12, 'thin2/period',5,P, 6, 'age="',8,age#"t",5, 'vol=",8,vol#"
t")

next (grow)

tracetest (outvars#"t")

clear::t
age#"t"=0
vol#"t"=0

write ($,'w',12, 'clear/period

',5,P,6, " 'age=",8,age#"t",5, 'vol=",8,vol#"t")
next (grow)

tracetest (outvars#"t")

96
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

sub
gr#"t":write($,'t', 1, "kukuu"t"")
back

endsub

;enddo

/

The nodes are identified both by the generic node (treatment) name and the period.
The nodes can be defined in any order, e.g. one can define first all growth nodes and
the all thin nodes. It is not necessary to define all nodes for all periods, e.g. for initial
periods there can be more treatment options. If there is a fixed number of treatment
programs defining all the thinning times, then it may be useful not to define generic
thinning nodes but thinning_at_age_80 _in_program_1 type of nodes.

The next function tells that the argument nodes will be entered for the next period.
The next function can have several arguments and it can be in any place in the node
section. The whole node section is always computed before going to next period. The
next and branch function accumulate the branching nodes during the execution time.

Note 1: When adding nodes with next it is not tested if the nodes are already present
(if this will cause difficulties in practice | may add such testing, possibly conditional
on some test option)

Note 2: The branch function serves similar purpose as next function. The difference
is that next function adds nodes to the next period but branch is adding nodes to the
current period. It is tested if the nodes are already in the node list.

The sub sections contain start address. . . back subsections to which one can jump
from any node. If there are period dependent computations in these 'subroutines’, then
also the starting addresses must be period specific.

There is no default action with respect to the period variable. It may be useful not to
use period variable e.g. in the input programming; do loops as the index (t in the
above example) in order not to confuse the period in the simulator definition and in
the simulations.

Note 3: The simulator function checks during the simulator generation that all
argument nodes of next-functions are defined. It also checks that there are next
functions so that at least the keepperiod level can be reached. If next functions are
dependent on logical conditions it may happen that during the simulation the
keepperiod level is not reached. An error results in this case only if there is no
branches reaching the xeepperiod level.

Note 4.: The above example show how ; trace and tracetest can be used to check
that all output variables get values at each node for each period. After testing the
simulator properly, these can be commented out.

97
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

12.1.2 Special functions used in a simulator
next (nodel, .., nodem)
Adds nodes to the list of children nodes of the current node.

see the simulator function above

branch (nodel, .., nodem)
Adds nodes to the list of sister nodes of the current node.
see the simulator function above

It is first tested if the nodes are already in the list of sister nodes because the next
command can have put the nodes into the list during the previous period at the mother
node.

cut ()

Removes all children nodes generated by previous next function calls (a regret
function for next)

loadtrees ()

Loads initial state tree variables into the tree vectors. What variables are loaded is
determined within the simulate function. During the initialization phase of the
simulate function it is checked which variables are both in the treevars option of the
simulator and in the tree data set linked to the stand data, and the values are put into
the initial positions of the tree variable vectors.

Example:
Assume that a#0 gives the initial diameter, and there are initially ntrees#o0 trees in a
stand. The one can defined diameters for next periods e.g.

loadtrees ()

;do(t,1l,nper)

growth::t

ntrees#"t"= ntrees#"t-1" ! one can kill or make new trees so number may change
do(tree,1l,ntrees#"t")

d#"t" (tree)=1.04*d#"t-1" (tree)

enddo

..;enddo

Note. It is possible to do tree level simulations without 10adtrees () and tree data
set: one can generate trees from the stand variables.

98
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

12.2 Using a simulator: simulate ()

simulate (simulatorl|[..,simulatorn] [,data->]
[,selector->] [, keep->] [, keepperiod->] [,o0bs->]
[,obsw->][,unitdata->] [,unitdataobs->] [,nobsw->])

Simulate schedules
Output: data set storing stimulated schedules

Arguments: one or more simulator objects

Options:

data data set for stand data , if no data then the simulation is done using the values
of variables as they are during the computation (in this case no output data set is
generated (the simulator can of course e.g. write output files). If the simulator is using
such tree variables (given in treevars option) which come from tree data, then these
must be in the subdata linked to the data set.

selector If there are several simulator argument, there must be selector option
which determines which simulator is selected for the current stand. The selector
option has one or two arguments. The first argument gives the transformation set
which determines which simulator is selected. The second argument, if present, gives
the name of list object which tells which simulator is selected. The default is
Selected. See an example below.

keep The variables stored in the schedules data (output). If xeep-variables are not
given, then the output variables of the simulator are stored.

Note 1: variables with names starting with 's' are not counted as output variables.
Note 2. If there is no output, option is ignored.

keepperriod Each node in the simulated tree at the keepperiod level determines a
schedule. The whole subtree below the node is visited before generating the schedule.
The default for xeepperiod is the value of the periods option of the simulator.

obs if output: the schedule data variable indicating the cumulative schedule
number in the schedule data (output). Default is 'sched'.

obsw the schedule data variable indicating the schedule number within the current
unit. Default [name of the obs-variable]//'s'/[name of the obs variable of the data set]

unitdata the data set containing all variables in the input data plus the nobsw
variable (cdata of old JLP). The output schedule data is linked to the unitdata Set so
that thereafter unitdata data set can be used as the input data for the optimization
(51p function). The default is 'unitdatas'//[the name of the output-variable]

99

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

unitdataobs the variable in the unitdata indicating the observation number.
Default is 'unit".

nobsw the variable in the unitdata indicating the number of schedules in each unit
(used to link output to unitdata). Default Nsched

maxtrees maximum number of trees in one stand, default 100. This option has
meaning only if there was treeevars option in the simulator definition.

buffersize Schedules are temporarily stored in linked buffers. Buffersize option
gives the number of schedules in one buffer. It may be useful to experiment different
values in large simulations. Default is 10000.

Note: output will linked to unitdata in the same way as subdata to data in data-
function or in 1inkdata function.

E.g. the simulator js defined above can be used as follows:

age#0=40

vol#0=50

simulate (js)

kukuul

grow/period 1 age= 50 vol= 75
kukuu?2

grow/period 2 age= 60 vol= 100
kukuu3

grow/period 3 age= 70 vol= 125
kukuud

grow/period 4 age= 80 vol= 150
kukuub

grow/period 5 age= 90 vol= 175
thin/period 5 age= 90 vol= 90
clear/period 5 age= 0 vol= 0
thin/period 4 age= 80 vol= 75
kukuub

grow/period 5 age= 90 vol= 100
clear/period 4 age= 0 vol= 0
kukuub

grow/period 5 age= 10 vol= 25
thin/period 3 age= 70 vol= 60
kukuu4

grow/period 4 age= 80 vol= 85
kukuub

grow/period 5 age= 90 vol= 110
thin/period 5 age= 90 vol= 51
clear/period 5 age= 0 vol= 0
thin/period 2 age= 60 vol= 45
kukuu3

grow/period 3 age= 70 vol= 70
kukuud

grow/period 4 age= 80 vol= 95
kukuub

grow/period 5 age= 90 vol= 120
thin/period 5 age= 90 vol= 57
clear/period 5 age= 0 vol= 0
thin/period 4 age= 80 vol= 42

kukuub

100
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

grow/period 5 age= 90 vol= 67
clear/period 4 age= 0 vol= 0
kukuub

grow/period 5 age= 10 vol= 25

Example of using the simulator with data:

dat=data (read->(age#0,vol#0),in->)
10,5

45,50

10,5

/

simdata=simulate (js,data->dat,unitdata->cdat)

Example of using the selector option (this also demonstrates a use of object list as a
pointer).

select=trans /()

if (standtype.eqg.l) then
Selected=list (js)

else
Selected=1list (js2)
endif

/

simsdata=simulate(js,js2,data->data,selector->select,unitdata->cdat)

13 Plotting figures

There is clearly a need to make graphs within J. On the other hand, it is not
reasonably to try to include professional level graphs routines in a program like J. The
purpose is to make J as efficient as possible in solving large Ip-problems. Graphic
windows take much memory, and it is complicated to use a large text I/O window in
the same program which is using graphic windows. Some simple graphics has been
organized in J as follows. The graph functions of J produce figure objects, which are
automatically, or with special show function written into temporary working file
jfig.jfig. There is an accompanying program jf£ig which waits for the appearance
of sfig.jfig. When the file is ready, it reads it and plots the figure. One can then
copy the figure as a bitmap into e.g. Word. When the user will click with the mouse
on the figure, 5fig will delete yfig.3fig. When J has written file jfig.jfig, it
continues execution. But if J is asked to make a new figure and file fig.jfig exists,
then J is waiting the disappearance of jfig.jfig (i.e. clicking on the figure window)
before it writes a new jfig-file.

Publication level graphics can be created using free R software. Using r-> option in
graphic functions the figure is written into a text file which can be loaded into R using
source("file™) command. The file can be edited to get proper legends etc. The R figure
can be saved as a postscript file.

The first graphics J functions are:

101
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Scatterplot: plotyx ()

plotyx (yvar,xvar[,data->] [,mark->] [,xrange->] [,dx-]
[,yrange->] [,dy->] [,append->] [, show->])

Makes a scatter plot figure with the help of 5 £ig program.

Output: a figure object, default rigure

Arguments: y-variable and x-variable

Options:

data data sets

mark character used to plot observations, default '+'

xrange-> (xmin, xmax) , Minimum and maximum of the x-axes , and the distance
between major ticks, default, the observed minimum and maximum of x-values, and
for ax the default is 10% of the x-range. It is possible to give only xmin or only xmin
and xmax.

dx the distance between major ticks, the default is 10% of the x-range.

yrange-> (ymin, ymax) , similar as xrange

append the figure is appended to the output figure object

show , show->0 indicates that the figure is not shown (can be shown later after adding
more sufigures)

Drawing a function: draw ()

draw (func->[,x->] [,xrange->] [,dx->] [,yrange->] [,dy->]
[,y->]1[,points->][,append->][,style->][,width->]

[,color->] [,mark->] [,show->][,r->])

Draws a curve into a figure object shown with the help of jfig- program

Output: a figure object, default: Figure

Options:

func describes the function to be drawn, e.g. func->(sin (x)), transformations
objects can be utlized through value function, e.g. func-> (value (ss,y)) Where ss
is transformation object and y variable getting value in ss.

If v is functions of x:

102
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

xrange-> (xmin, xmax [, xmin2, xmax2]) , minimum and maximum of the x-axes , and
the distance between major ticks, for ax the default is 10% of the x-range. If xmin2
and xmax2 are given, the function is drawn within this range not for the complete
range of x axes.

dx the distance between major ticks, for ax the default is 10% of the x-range

x variable which defines the x-axes for the curve.

If x is function of y :

yrange-> (ymin, ymax [, ymin2, ymax2]) , minimum and maximum of the y-axes. If
ymin2 and ymax2 are given, the function is drawn within this range not for the
complete range of y axes.

dy the distance between major ticks, for ay the default is 10% of the y-range.

y variable which defines the y-axes for the curve

points number of points generated, linear interpolation between the points, default
100 if ax or 4y is not given, 10 points in each dx or dy section.

append the figure is appended to the output figure object

style style of the line, o=no line, 1=is solid line, 2 = dashed line , 3= dotted line, 4
= dashdot line, these values work also with r-> option.

width width of the line, default is 1, has effect only in the R-version of the figure

color 1=Dblack, 2=red, 3=green,4=Dblue,5=turquoise,s=purple,7 (or greater)=yellow
(the same colors apply when transporting to R)

mark mark put to some points on the line

show , show->0 Indicates that the figure is not shown (can be shown later after adding
more subfigures)

r with no argument this implies that the figure is written to file 'jfig.r' which can be
loaded into R using function call:source("jfig.r"), if the argument is given, then it
defines the file name.

Note. The other line types except the solid line do not show up properly when the
figure is shown with Jfig program if the number of points is large (i.e. line segments
are short). With R these are displayed properly.

103
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Drawing line through points: drawline ()

drawline(x1[,..,xn][,y1][,..,yn] [,append->][,style->]
[,width->] [,color->] [,mark->] [,position->][,r->]
[, show->])

Draws a polygon connecting points (x1,y1), (x2,y2) etc into a figure object shown
with the help of 5£ig program. If only one point is given, then text given in mark —
option is placed at that point.

Output: a figure object, default: rigure

Arguments: The x and y coordinates of the points. If there is only one argument which
IS a matrix object having two rows, then the first row is assumed to give the x values
and the second row the y values. If there are two matrix (vector) arguments, then the
first matrix gives the x-values and the second matrix gives the y-values.

Options:

style, Style of the line, 0=no line, 1=is solid line, 2= dashed line , 3 = dotted line,
4= dashdot line

width width of the line, default is 1, has effect only in the R-version of the figure
color 0=black, 1=red, 2=green,3=blue,4=purple

mark Mmark put to the corner points on the line. If only one point given, then text to
be placed at the point in position indicated by the position option.

position if only one point given, then the option indicated how the text given in
mark is placed with respect to the point. The interoperation is:

0 (default), text is centered
1, text is below

2 text is left

3 textisup

4 text is right

r with no argument this implies that the figure is written to file 'jfig.r' which can be
loaded into R using function call:source("jfig.r), if the argument is given, then it
defines the file name.

show , show->0 indicates that the figure is not shown (can be shown later after adding
more subfigures)

Note 1: if style->0 and there is mark-> then only the points are shown.

Note 2: If you like to have symbolic names for colors and styles you can define these
nicely by putting definitions into the startup file j.par.

104
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Note 3: The position codes are the same as in R, and the output of text tries to imitate
the R output so that one could put legends on the graph already in J and use R just to
draw final figures.

Drawing class information: drawclass ()

drawclass (matrix,x->[,xrange->] [,yrange->]

[, histogram->] [, freq->][,sd->] [,se->][,dx->][,append->]
[,style->][,color->] [,mark->][,r->][,show->])

Plots class information produced by c1assify function (class means standard
deviations, standard errors)

Arguments:

matrix a matrix containing class information (produced by c1assify function)
x variable which defines the x-axes

Options:

xrange-> (xmin, xmax) defines a new x-range for the figure. If xmin=xmax=0, then
the minimum and maximum x-coordinates used in any subfigure are used. The new
range will become property of the figure object.

yrange-> (ymin, ymax) defines the y-range for the figure.

histogram histogram is produced

freq histogram is for produced for counts (default percentages)

sd standard errors of class means are drawn

se class standard deviations are drawn

dx the distance between major ticks, for ax the default is 10% of the x-range
append the figure is appended to the output figure object

style style of the line, 0=no line, 1=is solid line, 2 = dashed line , 3= dotted line, 4
= dashdot line, these values work also with r->option r with no argument this
implies that the figure is written to file 'jfig.r' which can be loaded into R using
function call:source("jfig.r"), if the argument is given, then it defines the file name.
color @ives the color code for the whole figure which will bypass any color codes
given in subfigures. If no argument is given, the drawing is done in black. This is
useful if we want to see figures in colors then we must turn everything into black and

white when producing figures for publications. The color codes used in the subfigures
will remain unchanged.

105
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

mark Mark put to some points on the line
r with no argument this implies that the figure is written to file 'jfig.r' which can
be loaded into R using function call:source("jfig.r"), if the argument is given, then it

defines the file name.

show show->0 indicates that the figure is not shown (can be shown later after adding
more subfigures)

show (fig[,r->] [,xrange->] [,yrange->] [,color->])
Shows a previously made figure

Argument : a figure object to be written into filer 5fig. 3 fig So that the program Jfig
can then show the figure.

Options:

xrange-> (xmin, xmax) defines a new x-range for the figure. If xmin=xmax=0, then
the minimum and maximum Xx-coordinates used in any subfigure are used. The new
range will become property of the figure object.

sd draw +- class standard deviation around class mean
se draw +- class standard error (sd/sqrt(n)) around class mean

yrange-> (ymin, ymax) defines a new y-range for the figure. If ymin=ymax=0, then
the minimum and maximum y-coordinates used in any subfigure are used. The new
range will become property of the figure object.

r with no argument this implies that the figure is written to file 'jfig.r' which can be
loaded into R using function call:source("jfig.r"), if the argument is given, then it
defines the file name.

color gives the color code for the whole figure which will bypass any color codes
given in subfigures. If no argument is given, the drawing is done in black. This is
useful if we want to see figures in colors then we must turn everything into black and
white when producing figures for publications. The color codes used in the subfigures
will remain unchanged.

***Currently only one argument allowed, later several figures can be overlaid.
14 Stem curves, splines and volume functions

J will contain many tools for handling stem curves. Currently there are the following
functions available.

106
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

14.1 Stem splines

=stemspline (hl,..,hn,dl,..,dn
[,sort->][,print->])

Output: an interpolating cubic spline, designed especially for stem curves by Carl
Snellman. To prevent oscillation (which can happen with splines) two knots are
merged if the distance between heights is less than 8cm (this can be made an option if
needed). The resulting spline is tested to see if it oscillates. For each knot interval, the
value of the spline is computed at 1/3 and 2/3 point of the knot interval. If the larger
of these predicted diameters is larger than 0.4 cm + largest of the endpoint diameters,
a new knot is added with the diameter value equal to 0.7*the larger endpoint
diameter+0.3*the smaller endpoint diameter. If the smaller of the tested diameters is
smaller than the smaller endpoint diameter-0.4 cm or it is smaller than 0.4 cm a new
knot is added with diameter value 0.7*the smaller endpoint diameter+0.3*the larger
end point diameter.

Arguments: h1,...,hn, the heights of measured diameters (in m), d1,...,dn, the
diameters (cm).

Options:

sort the default is that the heights are increasing, if not then sort option must be
given

print If print option gets value 2 then only the problem cases are printed, if less than
2, then nothing is printed (unless an error occurs)., with value 3 or greater the knot
points are printed.

The resulting spline can be utilized using value, integrate Of stempolar functions.

=stempolar (stemspline,angle[,origo->] [,err->])

Compute the diameter at polar coordinate angle (in degrees) using a stemspline
object.

Arguments

stemspline astemspline object (produced by stemsp1ine function)
angle polar coordinate angle (in degrees)

options:

origo gives the baseline when computing the angle, default is o

err if the is error in obtaining the polar coordinate diameter, then err option defines
transformation set which is called before returning from stempo1ar function.

107
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

=laasvol (species,dbh[,d6] [,h])
Volume functions of Laasasenaho (1982).

Arguments

species 1 =Scots pine, 2= Norway spruce, 3 and 4 = birch, o=larch (not available
when dbh is the only measured dimension)

doh and ds (diameter at 6m) are in cm, height (n) is in m and result is in litres.
=laaspoly (species,dbh [,d6],h)
Polynomial stem curve of Laasasenaho (1982).

Arguments

species: 1 =Scots pine, 2= Norway spruce, 3 = birch, 5=aspen, s=alder, and
9=larch (not available when don is the only measured dimension)

doh and de (diameter at 6m) are in cm, height (n) isinm

The curve can then be used using value function, e.g.

curve=laaspoly (species, dbh,h)
d6é=value (curve, 6) ! diameter at 6 m.

Functions providing volume integrals of the curves and height of given diameter will
be added on the request.

=tautspline(x1,..,xn,yl,.. ,yn
[,par->][,sort->][,print->])

Output: an interpolating cubic spline, which is more robust than an ordinary cubic
spline. To prevent oscillation (which can happen with splines) the function adds
automatically additional knots where needed.

Arguments: x1,...,xn, the X values, d1,...,dn, the y values. There must be at least 3
knot point, i.e. 6 arguments.

Options:

par Qives the parameter determining the smoothness of the curve. The default is
zero, which produces ordinary cubic spline. A typical value may 2.5. Larger values
mean that the spline is more closely linear between knot points.

sort the default is that the x’s are increasing, if not then sort option must be given

print if print option is given, the knot points are printed (after possible sorting).

108
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

The resulting spline can be utilized using value

The taut spline algorithm is taken from: de Boor (1978).

15 Utility functions

15.1 Working directory

The current working directory can be seen or changed.
showdir ()

Prints the current working directory

setdir (charval)

Sets the current working directory. The argument is a character variable or character
constant.

15.2 Timing functions

There are two timing functions which can be used to measure the computation time.
There are two versions of each, without argument, and with an argument

secnds ()

purpose: first call gives the elapsed time since midnight in seconds
secnds (t)

purpose: gives the elapsed time since midnight -t.

cpu ()

purpose: first call gives the cpu time since starting the program in seconds
cpu(t)

purpose: gives the total cpu time -t

15.3 List functions

=list(objl,..,objn[,mask->])

Defines an object list

Qutput: a list object

109
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Arguments: 0-n objects (need not exist before)

Options:

mask defines which objects are picked from the argument list, value o indicates that
the object is dropped, positive value indicates how many variables are taken, negative
value how many object are dropped (thus 0 is equivalent to -1). mask option is useful
for creating sublists of long lists.

Note 1: If an argument does not exist beforehand, it is first created as a real variable.

Note 2: The same object may appear several times in the list. (see merge)

Note 3: There may be zero arguments, which result in an empty list (see example
below)

Examples:

all=1list () ! empty list

sub=1list ()

;do(i,1,nper

period#"i"=1list (ba#"i",vol#"i",age#"i", harv#"i")
sub#"i"=1list (@period#"i",mask->(-2,1,-1))

all=list (@Rall,@period#"i") !notethat all ison both sides
sub=list (@sub, @sub#"i")

;end do

=merge (objl,..,objn)
Defines a list dropping multiple references to the same object
Arguments: objects or lists

If an argument is a list, then it is not necessary to expand it using e-operator, even if it
can be expanded and the result is the same.

Note: arguments of merge need to be known beforehand (unlike in 1ist function).
=difference(listl,blist2)

Defines a list dropping from list 1ist1 all objects found in list 1ist2

Arguments: lists

index (object,list[,any->])

Gets the index of a variable in a list, usually in the keep list of a data set (the column
number in the data matrix)

Arguments:

110
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

object object name

1ist : a list object

Options:

any accept also that variable is not in list (output=0) without error condition

Note 1: if the second variable is not a list, error occurs. If the variable is not in the list,
index gets value 0.A error condition is obtained if any option is not present

Note 2. It is faster to get the value of the index within input programming or outside
the transformation set so that it must not be searched repeatedly.

Note 3. See chapter 9.5.2 for an example how to utilize index function.
len(list[,any->])

Returns the number of elements in the list

Argument: a list object

Option

any len returns value-1 if argument is not legal object for 1en (without any-> an error
occurs)

Note 1: 1en works also for text objects, returning the number of characters in a text
object, and for a matrix it returns the number of elements in the matrix.

Note 2: The value of a specific list element variable can be obtained using value
function

15.4 Getting value from an object: value(object,xvalue)

If a J function generates an object containing parameters for a special function then
the va1ue function can used to generate values from the object. The general form of
the value function is

=value (object,xvalue[options])

where xvalue IS the value used as the argument for the object which can be used as a
function. For most cases the object can be used also otherwise. The output is a single

numeric value.

If the first argument is a list and there is option index-> then the object is picked
from the list.

There are the following special cases.

111
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

15.4.1 Interpolating a regular matrix: value(matrix,x)

=value (matrix,xvalue[,row->])

Interpolates linearly rows of matrices.

Arguments:

matrix a matrix
xvalue Value for which a row must be interpolated

Options:

row Gives the y-row for interpolation if there are more than two rows in the matrix
and only one row needs to be interpolated.

#The first row of the matrix defines the knot points. It is assumed that knot points are
in increasing order. If there are only two rows in the matrix, then the second row
defines the values at the knot points. If there are more than two rows then a vector is
generated by interpolating each row from 2 t0 nrows (matrix), unless there is row
option

Note: Also extrapolation is allowed, i.e. the argument can be smaller than the first
knot point or larger than the last knot point.

Example:

sit>a=matrix (3,4,in->)
10, 20, 30, 40
15, 16, 18, 20
20, 40, 60, 80
/
sit>v=value (a, 35)
sit>print (v)
v is matrix(2, 1)
19.00000
70.00000
sit>c=value(a,15, row->2)
sit>print (c)
c= 15.50000

*** | ater quadratic and cubic interpolation, as well of interpolating two dimensional
matrices will be available.

15.4.2 Interpolating a classify-matrix: value(cl_matrix,xvalue)
=value (cl_matrix, xvalue)
Interpolating a matrix produced by c1assify function.

Output: a real variable

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014
Arguments:

cl matrix amatrix produced by c1assify function

xvalue Value of the x variable used for computing class means.
15.4.3 Using a spline: value(spline,xvalue)
=value (spline, xvalue)

Gets values from a smoothing spline or a stem curve spline

Arguments:
spline a spline generated by smooth Or stemspline function
xvalue argument of the spline.

**|ater other types of splines will be available

15.4.4 Getting values from a transformation set:
value(tr_set,xvalue)

=value (tr_set,xalue[,arg->][,result->])

112

Arguments:
tr set a transformation set generated by trans function
xvalue argument which is put into the argument variable (default Arg)

of the transformation set

Options

arg variable used as the argument variable, it bypasses the argument variable

associated with the transformation set

result defines the variable whose value is the result of the function, default is the

result variable associated with the transformation set (and default for that variable is

Result)

Note 1: The original value of the argument variable is remains unchanged.

Example:

s=trans (input->,arg->x, result->h)
h=sin (x+z+1)

/

Then y=value (s, 3) Isequivalent to

113
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

x0ld=x
x=3
call(s)
y=h
x=xo0ld

This form of the va1ue function is useful e.g. in filter, reject Or func Options or
when transformations are needed to get numeric values into options.

Note 2: A transformation set can be used also as a function using result function, if
the transformation set does not use an argument whose value need to bypassed
simultaneously.

15.4.5 Gettting value of a list variable

=value (list, index)

Arguments:

1ist avariable list generated by 1ist function

index index of the variable

Example:

alist=list(a,b,c)
b=6.7
Then value (alist,2) returns 6.7

*** |_ater there will be more function objects accessed using value function
15.5 Inverse function: valuex(object,yvalue)
An inverse function gives the value of the x-variable for which the function obtains a

given value. Currently the only inverse function implemented is:

15.5.1 Height of diameter using stemspline:
valuex(stempline,diameter)

=valuex (stemspline,diameter)
Output: height (in m) of a given diameter

Arguments:

stemspline Sstemspline object generated with stemspline
diameter diameter (in cm) for which the height is obtained

114
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

15.6 Interpolating points: interpolate()

interpolate (x0,x1[,x2],y0,y1[,y2],x]

If arguments =2 and y2 are given then computes the value of the quadratic function at
value x going through the three points, otherwise computes the value of the linear
function at value x going through the two points.

Arguments: numeric values

Note. The argument x need not be within the interval of given x values (thus the
function also extrapolates).

15.7 Integrating a function

*** | ater there will be several forms of integrate function. Currently the only one
is:

15.7.1 Integrating stem curve to get stem volumes
=integrate(stem spline,hl, h2)
Output: volume (dm?®) of stem segment

Arguments:

stem spline a Stem spine generated with stemspline function
h1l lower limit of the stem segment, in metres
h2 upper limit of the segment, in metres

Note 1: The upper limit must be smaller or equal to the to the last height argument
given in stemspline.

Note 2: This form of the integrate function does not integrate the value of the stem
curve but actually x0.25+value(stem_spline,h)® and the result is then divided by
10000 to get the result in dm?* (in stem splines both height and diameter are in cm)

15.8 Bit functions

In some applications we may need several indicator variables to indicate if some
property is present. In large data sets would be waste of space to store a separate
variable for each indicator. J has special bit functions for packing several indicators in
the same variable. One variable can store 32 indicators, and it is also possible to store
more indicators using variable lists. When bits are stored into variables, then these
variables can be included in data sets. There is also a special bit matrix object which is
created with bitmatrix function. The bit patterns can be read from files, or set by
setvalue function. Bits in a bit matrix can be obtained with va1ue function and the

115
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

matrix can be printed with print function.. There are following bit functions
available.

setbits(ind, bitl,..,bitn)

Sets one or more bits on.

Arguments:

ind areal variable or a list of real variables (do not expand by ¢))
Note: argument ind is used both as input and output

bitl,..,bitn bit positions to be puton

The bit positions of a real variable are numbered 1,...,32, the bit positions of a
variable list are numbered from 1 to 32*(number of variables in the list).

clearbits (ind,bitl, ... ,bitn)

Sets one or more bits off.

Arguments:

ind areal variable or a list of real variables (do not expand by @))
Note: argument ind is used both as input and output

bitl,.., bitn bit positions to be put off

The bit positions of a real variable are numbered 1,...,32, the bit positions of a
variable list are numbered from 1 to 32*(number of variables in the list).

Note: giving value zero to a real variable clears all bits.

=getbit (ind,bit)

Gets the value of a bit position.

Arguments:

ind: a real variable or a list of real variables (do not expand by @)

bit bit position to read

function: If the bit is on, then the value of the getbit function is 1 (True), otherwise

zero (False). the bit positions of a real variable are numbered 1,...,32, the bit positions
of a variable list are numbered from 1 to 32*(number of variables in the list).

116
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Note: The getbit function can be directly used in logical statements, e.g.,
if (getbit (ind, 8)) then

=getbitch (ind[, from] [, to])

Gets indicators into a text line, '1" indicating a bit which is on, and 'o' a bit which is
off.

Output: text object

Argument

ind a real variable or variable list

If there are no other arguments, then all 32 bit positions are put into the output, if
there is on additional argument, then this indicates the number of bits read, and if
there are two additional arguments the first indicates the starting position and the
second indicates the last position.

Example:

sit>a=0

sit>setbits(a,2,5,7)
sit>v=getbitch (a)

sit>print (v)

v 1s text object:
01001010000000000000000000000000
sit>

=bitmatrix (nrows[,colmax][,in->][,colmin->][, func->])

Qutput: a bit matrix object.

Arguments

nrows number of rows in the bit matrix, value -1 indicates that this is indicated by
the number of records in the file given in in-> option.

colmax upper limit of column index, default=1, value -1, indicates that this is
obtained from the column indices read from the file given in in-> option.

Options

in indicates that the bit pattern is read from the input paragraph or from the file. If
in-> option is not given then all bits are initially zeros until changed with setvaiue
function.

colmin gives the lower limit of the column index

func When read the column indices, they can be transformed first using the function
given in func option. The column index read from the data is put into the default
argument variable 'x#".

117
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Examples:

=pbitmatrix (3,4,in->)
1,4

14 14

;1

NP ODNW

The first number tells how many bits are set for the row, then there are the column
indices.

=bitmatrix (3,4,in->,colmin->0) ! now 0 is legal column index
0,4

4 4

;1

~FP ODND

Note: If the matrix would be very sparse and large, then it is possible to use index
function to pack the matrix and access also the matrix. | give an example when this
packing is needed.

=value (bitmatrixobj,row|[,col] [,any->])

The value of a bit in a bit matrix can be obtained using va1ue function

Qutput: real value 1 or 0

Arguments

bitmatrixobj an object created by bitmatrix function

row rOw index

col column index

Option:
anyifrcmiorcoliSOUtOfrange(row<].0rrow>nrows(bitmatrixobj),Or
co1<colmin, or co1>colmax), the default is that an error condition occurs, but any->
option indicates that the value zero (False) is returned. This option is handy when
bitmatrix e.g. describes domains, then it is not necessary that each stand belongs to

some domain.

setvalue (bitmatrixobj,row[,col],value)

Sets bitmatrixobj(row,col)=value
All nozero values indicate that the bit is set into one.

=nrows (bitmatrixobj)

returns the number of rows in a bitmatrix

118
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

=ncols (bitmatrixobj)

returns the number of column in a bitmatrix
=closures (bitmatrixobj)

To get neighborhoods indicated by a bitmatrix
Output: a bitmatrix

Argument: A symmetric square (1:n,1:n) bitmatrix where ith row indicates all the
neighbors of ith point.

#All the neighbors of a given point are not necessarily neighbors if they are located at
opposite sides of a point. Closures function will generate all such neighborhoods
where all points are neighbors.

Example:

If points are located

12

34

56

Then this can be first described

ne=bitmatrix(6,6,in->)
4,1,2,3,4

Note that the ‘focus' point is given as first in each line, but the neighbors can be in any
order. Then commands

ne2=closures (ne)
print (ne2)

will produce output

ne2 is 2 x| 1 : 6) bitmatrix:
111100

001111

**The algorithm in closures is not well tested
15.9 Defining crossed variables: properties()

A data object is describing several subjects by defining for each subject a set of
variables associated with them. If there are a few named subjects then it may be useful

119
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

to have separate subject specific variables (constants) which define properties of the
subjects. These kinds of variables can be defined with properties function.

properties(varl,..,varn[,print->])
subjectl, wvall,..,valn

/

Defines subject specific constants.

Arguments: generic names of variables

Options:

print are the values printed (to check that they have been read correctly)

Input paragraph following properties function has a line for each subject, where
first is the name of the subject, and then values for all argument variables. The
properties function then defines variables having fist the generic variable name, then

's" and then the subject name.

Example:

properties (capacity, xkoor, ykoor)
rauma, 100, 64,78

pori, 30, 67,89

/

DEﬁnesvaﬁabmScapacity%rauma,xkoor%rauma,ykoor%rauma,capacity%porL
etc.

15.10 Storing values of variables

=store (varl,..,varn)

Stores the values of variables.

Output: a storage object

Note: A variable list may be again nice when defining the arguments.
load (storage)

Loads back the values of variables.

Argument: a storage object created by store.

*** Now only values of real variables can be stored. If there is need to store general
objects, it is quite easy to make store capable of handling these.

120
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

15.11Saving object into files

save (filename,objl,..,objn)

Arguments:

filename character variable or character constant, the name of the file
objl,...,objn named objects

Note 1: There can be several save commands which all save into the same file, the file
remains open after each save command.

Note 2. The file can be closed by using c1ose(filename)
*** Currently the only compound objects (i.e. objects having links to other objects,
e.g. data set or transformation set) which can be saved are:

-list of real variables
-regression object

unsave (filename)

Argument:

filename Character variable or character constant, the name of the file created by

save ().

Output will be the list of all objects loaded (default for the output is Resu1t as
usually)

Note 1: All objects saved in the file are loaded, i.e., without taking into account if
they are saved with one or more save functions. If an object to be unsaved already
exists, then it will be replaced. The number of replaced objects will be printed.

Note2: If unsave Is tested using it in the same run as the save functions, the file must
be closed first with c1ose function.

16 Error debugging and handling

16.1 Errors detected by J
If J detects an error then the following information is provided:
- J prints the current and previous input line as generated by the input programming.

- J will close all open include files and it tells how many lines it has read from these
files. Usually, but not always, the last line read has caused the error. E.g. ; do loops

121
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

are read first before starting to interpret lines within the loops. So if the error is within
the loop, then last line read is later than the error line.

If an error occurs when computing interpreted transformations within a transformation
set or a simulator, and saving of source code is not denied by source->0, then J also
prints the source code causing the error. The source code around the line can be seen
by using print function (possibly with row option) or by writing the whole source
code into a file using write function. The source code of a transformation set transf is
stored into text object sourcestransf. Usually the error line can be seen in the
include-file, but if input programming methods are used then the generated source
code and include file are not equal.

After an error the control returns to sit> level.

If the limit for the maximum number of named objects is encountered, then J stops.
See Set up of J how to proceed.

If J crashes and J window disappears, run the debug version of J on command prompt
window and send to the authors the debug information printed out to the console.
Select first the proper disk (e.g. C:) and select then the working directory using cd-
command (e.g. cd workl1/subl). If the exe-file is in the working directory write the
name of the exe file, and if the shortcut is in the directory type the shortcut name and
add ‘.Ink’ extension before sending the command. The shortcut name cannot contain
spaces (which the system may have generated).

When J is started again several time it may be wise to run J from the command
prompt regularly as the history of the working process can be seen from the command
prompt window, and arrow keys can be used to access input lines from earlier runs.

The error printed in the command prompt window can be ‘insufficient virtual
memory’. This is not an error of J, J just tries to allocate more memory than there is
available. On a Windows 32-bitoperating system a Win32 application cannot use
more than 2 GB of memory. This is by design from Microsoft. Possible solutions to
this problem are: 1) if there are many open applications, close unnecessary
applications (if the cause of the problem is the total available virtual memory, not the
2 GB of memory limit of one application), 2) delete unnecessary J-objects (when
deleting compound objects, the member objects must be deleted separately, sorry), 3)
reduce the size of the data and 4) when reading large data files, use xeep-> option to
store only the necessary variables in the data matrix, 5) when making new variables
use in data-function use trans-option instead of maketrans-option so that the new
variables are not stored in the data matrix, and 6) increase the size of the virtual
memory.

***Jis in principle protected against trying to put data above the allocated dimension
limits, but there may be errors, in principle at least..

122
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

16.2 Tracing variables

It is possible, using special tracing functions, to track changes of variables, define
minimum and maximum values for variables, and test if all required variables get
values within any phase of a J run.

;trace (objl,..,objn [,min->][,max->][,out->][,level->]
[, errexit->])

Start generating tracing information for objects.

Arguments: J objects (usually real variables)

Options:

min gives lower bound for a variable. If a variable gets smaller value then the value
and the source line are written, and if errexit option is present then an error
condition occurs.

max gives upper bound for a variable. If a variable gets smaller value then the value
and the source line are written, and if errexit option is present then an error
condition occurs.

out givesaname for an trace set object which will be generated and which can be
used in tracetest function to test that all objects ob71,...,0b9n have got values in a
section of a J run.

1evel defines the level or tracking, possible values are

0 means that tracing code is generated but it is now deactivated, it can be activated
later with trace function.

1 indicates that the changes of objects are counted but not automatically written unless
ranges given in min Or max Option is violated.

2 indicates that all changes are written.

If min, max OF out option is present then default is 1 otherwise 2.

errexit if value smaller than min or value greater than max occurs, then an error
occurs.

Note. When an object is used as an argument of ; trace function, then each time
when the object is an output of any function or arithmetic statement, then the
transformation interpreter adds a call to tracing function. What exactly happens in this
tracing function is dependent on the current values of tracing parameters which are
initially set by ; t race function but which can be later modified, also within an
transformation set, using trace function.

; trace function creates following objects:

123
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Tracevars = a cumulative object list of all objects used in all ; trace functions. Even
if generation of tracing code is stopped for an object, the object remains in the same
place in Tracevars list.

Tracestatus — rOW vector corresponding to Tracevars list indicating if tracing
code is generated (value 1) or not (value 0).

Tracelevel = row vector telling the current value of tracing level.

Tracecount = FOW vector showing counts of changes, used e.g. by tracetest
function

Traceminstatus= row vector indicating if minima are given

Tracemin = contains the given minimum values

Tracemaxtatus= FOW vector indicating if maxima are given

Tracemax = coOntains the given maximum values

Note. Current Tracevars list and current values of the trace parameter vectors can be
seen by printing. It is also possible to change the parameter values directly, but it is
recommended that ; t raceof £ and trace functions are used to change the values.

;traceoff (objl,..,objn)
Stop generating tracing code for objects.

Note: The objects remain in the Tracevars list but the values in Tracestatus vector
are changed into zero.

trace (objl,..,objn [,min->],[,max->][,level->]
[,errexit->])

Change the tracing parameters for objects. The meaning of arguments and options is
like in ; trace function. The differences are:

1. Arguments of trace function must be previous arguments of ; t race function.

2. Trace set can be defined only in ; trace function (using out-> option)

3. trace function can be an function within a transformation set, but ; t race function
is just done directly and it will not remain part of the transformations set. With trace
function one can program dynamic tracing and debugging strategies.

tracetest (traceset)

Test that all objects in a trace set object have been changed since last call of the
tracetest function ort from the beginning. If not all objects have been changed, an
error occurs.

Argument: An trace set object generated by the out option of the ; trace function.

Note: tracetest function is useful mostly in two different cases:

1. if the values of some variables are determined in complicated control structures
which may contain 'holes’, i.e. with some combinations of input variable values an
intended output variable does not get any value at all.

124
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

2. When defining a simulator it can very easily happen that all intended output
variables do not get values in all nodes. See simulator function how to utilize
tracetest function.

An example of tracing functions

Define a transformation set « r as follows:

tr=trans ()

a=1

;trace(a,b) !start generating tracing code

a=7

b=2

;traceoff (a) !stop generating tracing code for a
=4

=3

~ 0O o ~

Executing tr we get:

sit>call (tr)

a got value 7.000000 in tr at line 2
a="7
b got value 2.000000 in tr at line 3
b=2
b got value 3.000000 in tr at line 5
b=3

We can drop tracing of a even if the tracing code remains in transformation set tr.

trace (a, level->0)

call (tr)

b got value 2.000000 in tr at line 3
b=2

b got value 3.000000 in tr at line 5
b=3

Start checking that o is at least 3.

trace (b,min->4, errexit->)

call(tr)

b got value 3.000000 in tr at line 5
b=3

err transformation set=tr, *source= source%tr

error on source row 5:

b=3

An example of using tracetest. Define first trace set outvars and transformation
set tr2:

;trace (x1,x2,out->outvars) ! define trace set outvars
tr2=trans ()

if(a.gt.2)then

x1=5

x2=4

125
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

elseif(a.lt.3)
x2="7
endif

/

Define a and execute transformations:

a=1
call (tr2) ! now both x1 and x2 get new values
tracetest (outvars) ! nothing happens

But call then transformations using a=2:

a=2
call(tr2) ! now x1 is not updated
tracetest (outvars) ! comment helps to find the place if error occurs

*tracecount for x1 is zero
err transformation set=$Cursor$
**input line:tracetest (outvars) ! comment helps to find the place if
error occurs
*closing inc-file 'trace.txt'
after reading 34 lines from 34

See simulator for another example of tracetest.

16.3 J does not work correctly

Several functions have a debug-> option even if it is not described in the above
manual. With this option J writes extra information about how it proceeds. User may
try this option before consulting authors.

Error messages starting with "x5 =" indicate programming errors which should be
reported to the authors.

If there is in transformations or at the command level function

debug ()

then special debugging mode is entered. Debug information can be understood only
by the authors. Debugging can be made conditional by having argument

debug (t.gt.0)
This is actually equivalent to

if (t.gt.0)debug()
Debugging is put off by
debug (0)

17 Acknowledgements

Function j1p is using linear algebra subroutines contained in quadratic programming
software Bgpd made by Prof. R. Fletcher, University of Dundee. Even Bergseng

126
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

started to use the linear programming modules on a premature stage and Even has

detected a large number of errors. Jarmo Saarikko and Olavi Kurttio made the web
distribution of the software. Jarmo Saarikko also cleaned up considerably the first

version of this manual.

18 References

Dantzig, G.B and VanSlyke, R.M. 1967. Generalized upper bounding techniques.
Journal of Computer and System Sciences. 1:213-226.

de Boor, C 1978. A practical guide to splines. Applied mathematical sciences. Vol.
27. Springer-Verlag, New York, 392 p.

Dykstra, D. P. 1984. Mathematical programming for natural resource management.
McGraw-Hill. New York. 318 p.

Fletcher, R. 1996. Dense factors of Sparse matrices. Dundee Numerical Analysis
Report NA/170

Kilkki, P. 1987. Timber management planning. 2nd edition. Silva Carelica 5.
University of Joensuu. Faculty of Forestry. 160 p.

Lappi, J. 1992. JLP - A linear programming package for management planning.
Finnish Forest Research Institute Research papers. 414, 134 p.

Lappi, J. 2006. A multivariate, nonparametric stem-curve prediction method. Can. J.
For. Res. 36:1017-1027

Lappi, J & Lempinen, R. 2014. A linear programming algorithm and software for
forest level planning problems including factories. Scandinavian Journal of Forest
Research. DOI: 10.1080/02827581.2014.886714

R Development Core Team, 2004. R: A language and environment for statistical
computing. ISBN 3-900051-00-3. http://www.R-project.org

Steuer, R.E. 1986. Multiple criteria optimization: Theory, computation, and
application. John Wiley. New York. 546 p.

127

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

19 Index

In the following index J functions and statement are in lower case, other entries are in

the upper case..

- (SUBLraction) ...ccvevevere e 38
= (UNAFY MINUS) covevvevieicie e 38
$ (Object names starting with)..................... 18
e 38
B ettt et 38
Saa SR 38
AN, e 39
B0 et 39
BOV. oot 39
0B ettt 39
Ol e 39
B 39
SO 39
DB ettt 39
NEOV. ceveeriiieiiee st sie et ae s 39
NOL. e 39
(0] S PP T R PUPTOPPPPPPRTRIN 39
OSSPSR 38
100() i 27
=Y 00 [0 [0 27
TG00 e 28
Q) e 28
AFOtheN o, 28
TNCIO) cevee e 26
TTEEUMN e 27
TFACE e 122
@ISt o 29
LTS 38
ettt nreas 39
o s 39
> ettt 39
T s 39
D ettt nreas 39
> s 39
ADS() e 39
ACOS() - vveeeeertieie e e 40
ACOSA() +.veveeeeeieieee e s 40
ACOTAN() v 40
ACOLANA() ..veveeieeeeeee e 40
Address in a transformation set 49
Address in input programmingc........ 25
Area CoNSLraiNtSccvveveveere e 72
Arithmetic functions..........cccccoevvivieveiercnene, 39
ASIN() et e 40
ASINA() v+ 40
ASK() oot 54
ASKC() et e 55
ALAN() ..ot 40
ALANA() vt 40
Automatically created objects
PSR TSPRRR 23
SBUFFEr .. 23

BCUISOIS ..o 22
BCUISOI2F ... 22
BDAtEP ... 23,56
BValS ..o 22
Dataooieevieeieee e 23
DUPHICALE ..o 23
INPULYO .. 35
LastDataccceeevvviiviieeeee e, 23, 34
NAMES.....ccvieieeeeeecceee e 20, 22
OBS o 22
ODSWO ... 59
OULPULS cvvviieviee st 35
Pl 22
ReSUlt ..o, 17, 22, 36, 38
SOUTCED reverrtrrrerirnreesitieressrneessnssneesssnnes 35
Automatically created variables
Feasible ... 84
OPtIMAal......coiiiicircer 84
PIVOLS...ee e 84
PrNtinpUL......cooooiiiiiiecee 32
PriNtOUPUL. ..o 32
Started_jIp .o 84
Unbounded ... 84
DACK ..o, 50
BasiC StatiStiCScooveieieriereresiece e 62
Binary format..........ccccooeovviiiieieceeee, 51
Bit FUNCLIONS....cveiiiiiiieicce 114
BItMatriX ...ocveveeiveieeeeecece e 22
PItMALriX() oveveeeereecre 116
Pranch(() oo 97
BUFFEr e 53
CAT() v 36
(010 1 {) TSSO 41
CeIliNG() c.vevereeeeeeee 39
Character constant...........ccocevverenieeiereneneene 20
Character variableccocooiiiiiiii 20
ClaSSITY()eeivereiiiiiiee e 65
clearbitsS() ...oovreeieieee e 115
ClOSE() vttt 54
ClOSUIES() v 118
COBT() e 67
Copying ObJECE.......cooeviereicereee e 18
COT() vvrerereeeete et 64
COS() wvereerereereeie ettt 40
COSA() wveverrererieriere st 40
COSN() et 40
COL() ettt e 40
COLA() vttt e 40
COV() ettt 64
CPU() ettt e 108
CrOSSEA() cveververeeereeeerer e 59

CUL() ceveeeie e 97

128

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

CYCI i 49
Data set......ccccovvvireeieeieee e 21,55, 61
(01 L7 1 () OSSR 55
QAL 34
debug()..eeoereereeeee e 125
debUG->.coiieircec 125
Decision variablesccccooerviiiiiciicinnns 72
Default names
ATG i 35
Data....ccovieiieiee e 34
Figure ..o 23, 32,101
MAXYD ettt 63
MINYO.ceiicie e 63
NODS. ..t 63
NSCHEd ... 99
RESUIL ... 32,35
SChEd ..o 98
SeleCted......cooiiieieiee 98
T o 23,94
UNIt ., 23,99
UNItdata% ...ocvveeeeieee e 98
DEegIreesS....ccvveiieiirie e 40
delete()..viiniiiiiiie 19,54
AEI() cveeeeeereee e 42
difference() ..o.ooovevevievieeie v 109
(D (101 (0] V2SS 108
O() ceeeeieeres e 48
Domain variables.........ccocveiiiiiiiiiiiiene 73
OT() cvveereeeiee e 40
dotproduct() ...cceevveeireiece e 44
AraW() oo 101
drawclass()....oovrveeiineiii 104
Arawline() .o..oovevereeenineie e 103
DYKSEA ... 72
editdatal).....oovvireiiir e 58
elementprod()ccoveeveievie i 45
elementsum()cccoevveieviecie e 45
ISEIT().vveieeeieer e 48
BN . 17
ENAUO ..ot 48
BIT= ettt ettt 34
BITEXIE() cvvveeereee e 49
Error handling.........ccccoevviiiniiiinecie 120
EXISE() c.vevevereereeteree e 54
Lo 1o [0 SR 49
EXP() +ereererrernerenieree e 39
Figure object........cocevvvvieieieneireese e 21
FIQUIES . 100
File 51, 54
FlOOF() oo 39
FOrmatocveeiii e 51
Function ObjJects.........ccceveveiiieiiiieee e 22
GEDIL() v 115
GethitCh() «.ooveeeieece 116
[0 [=100] 011 (S 61
[0 To] (0] IS 50
IF() e 48
Immediate Operationsccocvveveververienenns 31
M= 24,33

INEX() v 46, 109
INpUt Programmingcccceeevvvveeervesiesennens 25
COMMANGS ... 26
CoNtrol StruCtUrescocovvervvvverriseinn 26
INE) e 39
INTEOET oo 39
integerschedcum()c.cccevevevvneciecieceniee, 90
iNtegersChedW()ccovereiriicincesc 90
INEEGIate() vvevereererreiere e 114
interpolate()......ovrvereeeriiiireeeeeea 114
inverse fUNCLION ..o 113
Inverse trigonometric functions 40
LN =T) IS 44
JuPAT et 16, 103
JHIG s 100
JAGJTIG e 100
JLP e 70, 84, 87
Constraints
ATBA ..o 72
Defining x-variablesc.ccocecvvennne. 71
ULHHEY oo 71
Decision variablescc.ccoovverinencnnnn, 72
Domain variables..........ccoccovvverenenennnne. 73
Model T...ooeeieee e, 72
Utility variables..........cccooceveevieieecec 72
W-variables ..., 72
W-variables- ..., 72
X-Variables ..o, 72
aggregatedcocvevveveiie s 72
Z-variables ... 72
JIP() e 78, 81
GEtting WOISE ..o 79
JUMP) e 50
Key ShOrtCULScoovveeiriiiciricccecc 30
KKK v 72
182SPOIY()..veevveeeecie e 107
182SVOI() .vveeeece e 107
1€N() cveeeee e 67
1€N(LIS) v 110
1€N(MALFIX).cveeiieieece e 46
Linear programmingccoceeeeeerienieneeneennes 70
liNKdata() ...ocoveveeereeireeee s 59
List arithmetics........ccooeveviervrivsecece e, 41
FISE() oo 108, 113
LiSES. vt 108
1080() .veveveeeerieeee e 119
10dErEES() «.vvvereeeireeeeiree s 97
10G() e veeveeieiene e 39
10GL0() e eeveeeeie e 39
Logical eXpressions.........ccccoeverereeieenienienes 38
Logical ValUesccocveieririieieece e 20
Matrices and VECLOrScccceverereeierienienne, 21
MAEFIX. 1t 111
Matrix computationsccoceeeevverncrennenn 42
MALTIX() ervereeeeeeere e s 43
11T 39
MErge liStS.....ccevvevieeiere e 109
MEFGE() cvevrereereereeriererese e ete e e e sre e e 109
MIN() et 39
Model L. 72

129

Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

MSE() +vevereerere ettt 67
4010] £ S 46, 118
NEXE() vvvereereie e 97
NINEQ) o 39
410] 0151 TS 60, 67
0] 01V (S 41
NFOWS()vrveevrerieieesiesie e sieeee e sre e sreeeas 46, 117
NUMETIiC EXPreSSIONSc.vevvrviieiiirerieiesierieieas 38
Numeric function.........cccccooeeiiiiiininienes 32
ODbject liStS......cvveiiiriiciriecee 20, 29
ODbjJECt NAMES ... 18
Objects created by functions
dOMAINSYD ..o 78
domaiNVardo........cccoeveneieninenieeeee 78
FACONIESYD ... 81
FEACOSIYD ... 81, 86
TNSYO .. 78
TNS290 .. 78
FOWSD .ot 78, 81, 85
SNPFICEYD o 79, 81, 85
Tracecountcccceeeeeevvciveeeee e, 23,123
Tracelevelooovveceeiiiiceiciiece 23,123
TracemaXccccvvereeeeeiiiiieeeee e e, 23,123
Tracemaxstatusccceeeeeeeeeinnnnen. 23,123
Tracemin.....coocovvveiieieiee e 23,123
TraceminstatusS ., 23,123
TracestatusS......ccceeeeeevvirveeeeeeeeeiiineee, 23,123
Tracevarsccovceeeeeevvciieeeee e, 23,123
VAISY0 .. 78
XKYKYO ..ot 81
ZVAIUBSYD ... 81, 86
ZVAISYD .o 81
10 o] (o] o PSS 33
PArAM() voveeveeiieeee e 68
partschedcum()coovvveiiiiicieeeee e, 88
PArtSChedW()coveeririiiircceees 88
PAEUNIE() .o 88
PArtWeight() ...ovverveeiirieceeeces 88
PArtWeIghtS() . c.vevevereieirieeciree s 88
PAT() ceeeeeeeee e 41
PIOLYX() vveiveieieeienieecie e 101
price%schedcum()cccoevenerenineieeeee, 89
Price%sChedW()cooveeeienenerieee e 89
PrCEYOUNIT() ..o 89
PrINE() e 50
Problem definition objectccccceiene. 21
Problem() ...cooe e 75
PrOPErtieS() «.veveereeeiereeiierieese e 118
F2() ettt 67
RAIANS ... 40
FAN() v 41
Random NUMDBErS......ccceveverirr e 41
FANN() wevieeeee e 41
FEAA() +veveeieenie ettt 51
Real constants...........cooeeiencneniiieeie s 19
Real variables ... 19
FEOP() cveveereeeeie ettt 66
REQreSSIONoviiiiiieiieiee e 66
Relational expressions............ccocvevviveiveiennens 38

FESUIE() cvvveeeee s 36

FETUIN Lo 49
LT IS 67
SAVE() rervereiesie e et 120
Scatterplot ... 101
SChedCUM() .o.vviveeeeieie e 87
SChEAW() c.veve e 87
SE() eerrererrere e 67
SECNAS() +vvevererreriete ettt 108
SEDILS() .o 115
SELAIN() vt 108
SEEMALFIX() c.vveveeeeeereeeee e 44
SEVAIUR() oo 117
SROMCULS ... 29
SNOW() vveeee e 105
SNOWAIF() e 108
SION() voveereee e 40
SIMUIALE() vvveeveeeeee e 98
SIMUIALOr ... 21,94
SIMUIALOI() ..eveveiceiriee e 94
SIN() cvereeeeree e 40
SINAQ) covevereeeerereee e 40
SINN(Q) coeeeeeee 40
SMOOTN() .. 68, 112
Smoothing spling ..o 68
o] 1 (USSR 47
SOM() eeveereerre e 39
o] 24) USSR 39
SEAL() eeveeei e 62
Statistical functions..........c.ccoceeiniiiiiincnnn 62
SEEM CUMNVES ...t 105
Stem SPHNESoovveeirie e 105
SEMPOIAr() oveveeeeeereesee e 106
StemSPhNe() ...covevvvvereereieiiieen 106, 112, 114
SEOPE() vttt 119
SUBMELFIX() v 45
() ceerreeee e 44
Tabulation format...........c.cocevinininiiiienes 52
TAN0) e 40
tANA() .ove e 40
tANN() e 40
tautSPliNe() ..oovevvereeieee 107
Text object ..o 20, 30, 31
EEXE() vt 31
TIMING e 108
TraCe SBL...eoiiieciie e 22
ErACE() vveeereeie et 123
traCeteSt()..cvevereerererieese e 123
TrANS() v 34,112
TrANS-2 ..o 34
Transformation Setccocevevviiiiencienens 21
Transformationscccoceveneneniniennnenee 32

AAAIESS ...t 49

coNtrol StruCtUreScocovveeerereiicne 47
TrANSPOSE ... 44
UNTE() e e 87
UNSAVE() cvruvrreereereeiesiesiesiesesreseenseeeseeneeseens 120
Utility variables...........ccoovvvvivvivccccccccvee, 72
value()ccoveneee 37, 67, 68, 108, 110, 111, 117
VAIUES() et 60
ValUEX() e 113

130
Juha Lappi and Reetta Lempinen: J- users' Guide —V2.1 August 2014

Volume functionsccoceveeiveneiinenenns 105 WEIGNTS() c.veveeeieereee s 87
weight%schedcum()cccocvvvvvvivivcieiecen, 89 WHICH() e 40
weight%schedW() ..vovevevece v 89 WIHEE() vevreie e 51

WEIGNE() veveece e 88

	Conditions of use of the software
	Changes from previous versions
	Table of contents
	Introduction
	1.1 System requirements
	1.2 Set up of J
	1.3 During the first use
	1.4 Exiting J
	1.5 Manual conventions

	2 J objects
	2.1 Object names
	2.2 Copying object: a=b
	2.3 Deleting objects: delete()
	2.4 Object types
	Real variables and constants
	Character constants and variables
	Text object
	Logical values
	Object lists
	Matrices and vectors
	Transformation set
	Simulator
	Data set
	Problem definition object
	Figure object
	Function objects
	Storage for variables
	Bitmatrix
	Trace set

	2.5 Objects created automatically and default names

	3 Command input and output
	3.1 Input line and input paragraph
	3.2 Input programming
	3.2.1 Addresses in input programming
	3.2.2 Changing "…" sequences
	3.2.3 Input programming commands and control structures
	;incl([file][,from->])
	;return
	;do(i,start,last[,step])
	;enddo
	;if(…)
	;elseif(value);then
	;endif
	;goto('adr')

	3.2.4 Utilizing object lists: @list and @list(elem)
	3.2.5 Shortcuts for implicit object lists: x1…x5, ?%x1
	3.2.6 Key shortcuts
	3.2.7 Defining a text object with text function and using it in ;incl
	=text()

	3.2.8 Accessing text object lines

	3.3 Immediate operations starting with ';'
	3.4 Controlling output

	4 J transformations
	4.1 Structure of general J functions
	4.2 Common options
	in->
	data->
	trans->
	err->

	4.3 J function for defining transformation sets: trans()
	4.4 Executing a transformation set explicitly: call()
	4.5 Using a transformation set as a function: result()
	4.6 Using a transformation set as a function with an argument: value()

	5 Arithmetic computations
	5.1.1 Standard numeric expressions
	5.1.2 Logical and relational expressions
	5.1.3 Arithmetic functions
	sqrt, exp, log, log10, abs
	Real to integer conversion
	min, max
	sign
	dot(c1,…,cn,x1,…,xn)
	which(cond1,value1,…,condn,valuen[,valuedef])
	Trigonometric functions, argument in radians
	Trigonometric functions, arguments in degrees
	Inverse trigonometric functions, result in radians
	Inverse trigonometric functions, result in degrees
	Hyperbolic functions

	5.1.4 Probability distributions
	pdf(x[,mean][,sd])
	cdf(x[,mean][,sd])

	5.1.5 Random numbers
	ran()
	rann()

	5.1.6 Special numeric functions
	npv(interest,income1,…,incomen,time1,…,timen)

	5.1.7 List arithmetics
	5.2 Derivatives

	6 Matrix computations
	6.1 Defining a matrix: matrix()
	6.1.1 Matrix functions
	setmatrix(matrix,value [,diagonal->])
	t(a)
	inverse(a)
	dotproduct(a,b[,limit1][,limit2])
	elementsum(a[,limit1][,limit2][,row->][,column->])
	elementprod(a,b)
	submatrix(a[,row->][,column->])
	nrows(a)
	index(val, a[,any->])

	7 Transformation control structures
	7.1 If
	if()
	if()then
	elseif()then
	else
	endif

	7.2 Loops
	do(i,start,end[,step])
	enddo
	cycle
	exitdo

	7.3 Return from a transformation set
	return
	errexit(arg1,…,argn)

	7.4 Using addresses in transformation sets
	7.4.1 Address in transformation set
	back

	8 IO-functions
	print(arg1,…,argn[,maxlines->][,data->][,row->][,file->])
	read(file,format[,obj1,…,objn])
	write(file,format,val1,…,valn[,tab->]) ! case[1/5]
	write(file,'t',t1,val1,t2,val2,…,tn,valn[,tab->]) ! case[2/5]
	write(file,'w',w1,val1,w2,val2,…,wn,valn[,tab->]) ! case[3/5]
	write(file,text_object) ! case[4/5]
	Writing into $Buffer ! case[5/5]
	close(file)
	exist(file)
	delete(file)
	ask(var1,…,varn[,default->][,q->][,exit->])
	askc(chvar1,…,chvarn[,default->][,q->][,exit->])

	9 Data sets
	9.1 Creating a data object: data()
	9.2 Modifying an existing data set: editdata()
	9.3 Linking hierarchical data: linkdata()
	9.4 Combining two observations in same class: crossed()
	9.5 Utility functions for data sets
	9.5.1 Extracting values of class variables: values()
	9.5.2 Number of observations: nobs()
	9.5.3 Getting an observation from a data set: getobs()

	9.6 Data set object

	10 Statistical functions
	10.1 Basic statistics: stat()
	10.2 Covariance matrix: cov()
	10.3 Correlation matrix: corr()
	10.4 Classifying data: classify()
	10.5 Linear regression: regr()
	10.5.1 Computing the regression function: regr()
	10.5.2 Using the regression object: value(),coef(),se(),mse(),rmse(),r2(), nobs(), len()

	10.6 Smoothing spline: smooth()
	10.6.1 Smoothing spline directly from data
	10.6.2 Smoothing spline from classified data

	11 Linear programming (JLP functions)
	11.1 Optimization problem without factories
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	Max or Min (8)
	(9)
	(10)
	(11)
	(12)
	(13)

	11.2 Optimization problem including factories
	(15)
	(16)
	(17)
	(18)
	,
	(21)

	11.3 Solution algorithm
	11.4 J functions related to JLP
	11.5 Problem definition: problem()
	11.6 JLP problem definition object
	11.7 Solving a problem: jlp()
	11.8 Solving a large problem with z-variables: jlp()
	11.9 JLP output
	11.10 Objects for the JLP solution
	11.11 Inquiry functions for the JLP solution
	=weights()
	unit(i)
	schedcum(i)
	schedw(i)
	weight(i)
	partweights()
	partunit(i)
	partschedcum(i)
	partschedw(i)
	partweight(i)
	price%unit(iunit)
	weight%schedcum(sched[,integer->])
	price%schedcum(sched)
	price%schedw(iunit,sched)
	weight%schedw(iunit,sched[,integer->])
	integerschedw(iunit)
	integerschedcum(iunit)
	xkf(file)

	11.12 JLP examples

	12 Simulator
	12.1 Defining a simulator
	12.1.1 Simulator definition: simulator()
	12.1.2 Special functions used in a simulator
	next(node1,…,nodem)
	branch(node1,…,nodem)
	cut()
	loadtrees()

	12.2 Using a simulator: simulate ()

	13 Plotting figures
	Scatterplot: plotyx()
	Drawing a function: draw()
	Drawing line through points: drawline()
	Drawing class information: drawclass()

	14 Stem curves, splines and volume functions
	14.1 Stem splines
	=stemspline(h1,…,hn,d1,…,dn [,sort->][,print->])
	=stempolar(stemspline,angle[,origo->][,err->])
	=laasvol(species,dbh[,d6][,h])
	=laaspoly(species,dbh [,d6],h)
	=tautspline(x1,…,xn,y1,…,yn [,par->][,sort->][,print->])

	15 Utility functions
	15.1 Working directory
	showdir()
	setdir(charval)

	15.2 Timing functions
	secnds()
	cpu()

	15.3 List functions
	len(list[,any->])

	15.4 Getting value from an object: value(object,xvalue)
	15.4.1 Interpolating a regular matrix: value(matrix,x)
	15.4.2 Interpolating a classify-matrix: value(cl_matrix,xvalue)
	15.4.3 Using a spline: value(spline,xvalue)
	15.4.4 Getting values from a transformation set: value(tr_set,xvalue)
	15.4.5 Gettting value of a list variable

	15.5 Inverse function: valuex(object,yvalue)
	15.5.1 Height of diameter using stemspline: valuex(stempline,diameter)
	=valuex(stemspline,diameter)

	15.6 Interpolating points: interpolate()
	interpolate(x0,x1[,x2],y0,y1[,y2],x]

	15.7 Integrating a function
	15.7.1 Integrating stem curve to get stem volumes
	=integrate(stem_spline,h1,h2)

	15.8 Bit functions
	setbits(ind, bit1,…,bitn)
	clearbits(ind,bit1,…,bitn)
	=getbit(ind,bit)
	=getbitch(ind[,from][,to])
	=bitmatrix (nrows[,colmax][,in->][,colmin->][,func->])
	=value(bitmatrixobj,row[,col][,any->])
	setvalue(bitmatrixobj,row[,col],value)
	=nrows(bitmatrixobj)
	=ncols(bitmatrixobj)
	=closures(bitmatrixobj)

	15.9 Defining crossed variables: properties()
	15.10 Storing values of variables
	=store(var1,…,varn)
	load(storage)

	15.11 Saving object into files
	save(filename,obj1,…,objn)
	unsave(filename)

	16 Error debugging and handling
	16.1 Errors detected by J
	16.2 Tracing variables
	;trace(obj1,…,objn [,min->][,max->][,out->][,level->] [,errexit->])
	;traceoff(obj1,…,objn)
	trace(obj1,…,objn [,min->],[,max->][,level->] [,errexit->])
	tracetest(traceset)
	An example of tracing functions

	16.3 J does not work correctly
	debug()

	17 Acknowledgements
	18 References
	19 Index

