
Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

1

Juha Lappi

J -users' guide
Version 1.0.3 ? 2011

Finnish Forest Research Institute
Suonenjoki Research Station

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

2

Lappi, Juha. 2009. J-users' guide. Version 1.0.3. Finnish Forest Research Institute,

Suonenjoki Research Station108 pp.

The J users' guide is published only electronically and is made available for public

access in the Internet

Keywords: forestry analysis, linear programming, data analysis, matrix computations,

simulation, optimization

Author's address: Juha Lappi, Finnish Forest Research Institute, Suonenjoki

Research Station, Juntintie 154, FIN-77600 SUONENJOKI, Finland

Author’s email: juha.lappi@metla.fi

Publisher: The Finnish Forest Research Institute Metla, Unioninkatu 40 A, FIN-

00170 HELSINKI, Finland

Metla project number: 3285

(URL: http://www.metla.fi/products/J/J-userguide.pdf.)

Copyright 2003 Finnish Forest Research Institute. All Rights Reserved.

The J users' guide is provided without warranty of any kind. It may include

inaccuracies or errors. The author may make improvements and/or changes in the

products at any time. These changes will be incorporated in the new editions of the J

users' guide. The most recent users' guide is available as a Word document at

download pages. The pdf file available at the public web page is updated less

frequently.

The distribution versions of J software may deviate in some details from the general

documentation presented in the J users' guide.

The names of companies and their products appearing in the J users' guide are

trademarks or registered trademarks of their respective holders

Conditions of use of the software

There are two license types for the J software. The use of J software is free for

research and teaching purposes (academic license). To use J for commercial or

production purposes or for practical forest planning requires commercial licence with

annual license fee.

The software is available at the web page http://www.metla.fi/products/J/ which

contains the conditions of use, user registration, and download page for registered

users.

http://www.metla.fi/products/J/

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

3

Recent changes

V=1.03

Tautspline function was added. The release version of J was aborted when using

unsave function to read saved objects. This was not a real coding bug but rather the

optimization of the software caused unintended results.

The problem object generated by problem function now includes also the list of

variables used in defining the domains.

Option class of jlp function is now reported. It was available already earlier but it was

communicated only personally to GAYA people.

jlp function generated z-variable list zvars%problem only if the jlp function had

output (i.e. output=jlp(…). Now it generates it always.

V=1.02

Treatment of nonlogical stem curve splines is changed in function stemspline. Note

that J contains also stem curve modeling functions which are not documented here but

were used to make the article J. Lappi (2006) A multivariate, nonparametric stem-

curve prediction method. Can. J. For. Res 36:1017-1027. Readers interested in

applying this approach should contact J. Lappi.

A bug corrected.

V=1.0.1

Functions secnds()returns now always the total time since midnight and cpu() returns

the total cpu-time since the start of the program.

A bug corrected.

Changes after baseline version 0.6

V=1.0.0

A bug in data-function corrected (default for subform did not work)

V=0.9.9

Some bugs corrected, options filter and reject added into data function. Functions

laasvol and laaspoly added for computing volume equations and stem curves of

Laasasenaho.

V=0.9.8

Some bugs corrected. New exist() function for testing if a file exists.

V=0.9.7

Some bugs corrected

V=0.9.6

In stat function an error condition is not generated if the nobs option is present and all

observations are rejected.

V=0.9.5

Option par for data function available when reading files made by Gaya software.

Option tab for write function which makes export to Word tables easy.

New statistical functions corr and cov for computing covariance matrix and

correlation matrix..

Trans-function has new option local which helps to prevents conflicts in variable

names.

It is possible to read binary files which do not have a record structure (e.g. files

created by Matlab). It is possible to read and write whole matrices. See read and write

functions.

V=0.9.4

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

4

Density function pdf() ands cumulative distribution function cdf (currently only for

normal distribution)

There are new debugging tools(see ;trace ;traceoff, tracetest and trace in Tracing

variables chapter)

Using only one index to indicate a matrix element is now allowed only for column

vectors (earlier one index indicated element number when matrix was ordered in row

order).

Matrix function has form option which makes matrix function to read the matrix row

by row, and it makes possible to add comments on the rows.

Functions trans and simulator store now by default all the source code into a text

object source%.. Option source->0 indicates that source is not saved. In case of error

in executing transformations the line generating the error is printed. Printing a text

object with print function has now option row-> which make it possible to print only

one line from a text object or a range of lines. Function write can be used to write a

text object into a file. In case of error J tells also how many lines it has read from a

include file. See error debugging for utilizing these new features.

If only one value is given in values option of the matrix function, then all elements get

this value. If there is diagonal option then the matrix is made diagonal. Matrix

functions can also used to set values for a existing matrix using values option.

There is new submatrix function which makes a new matrix from a previous matrix.

Arithmetic functions with several output variables are removed. Instead there is

possibility to do arithmetic operations using lists. See list arithmetics.

Width option for draw and drawline functions.

In smooth function weight option is replaced by variance option.

If the readfirst option of data function is given without arguments, then the first line in

the data file is interpreted as a header which is printed.

New sort and print options in stemspline function

Function drawline can have matrix arguments.

If b is a general object assignment a= b makes a copy of b into object a. Function

show has now options yrange->, xrange-> and color-> which make it possible to

show the same figure object in different ways. Smooth-function has new options

maxiter and iterations. Stat-function has new option nobs to get the number of

observations, and the functionality of other options have been improved New

transafter option for handling data (transforming only accepted observations).

The operation of J is made easier by adding new function up() by which the console

window is scrolled to point of last ;incl command. ;incl has new option clear-> which

determines how much space is reserved to output (if there is not space enough up()

does not go up enough). New function sqrt2 which works with nonpositive values.

Derivatives of any function can be computed using der- function. There is no more

any default for x variable in draw function. New option any-> for len function and for

index function for matrices. The value function and result function can pick the

function object from an object list if the first argument is list and there is index option

which indicates which function object is used.

Elementsum has options row-> and column-> which make it possible to sum column

element or row elements.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

5

V-0.9.3

weight-> option in stat –function. Some bugs corrected. More stem curves functions

(not yet reported here). Having only one point in drawline –function makes it possible

to place text anywhere in the graph. The text is transmitted also to a R script using r->

option. If a comment line in an include file starts with '*!', it will be printed. The data

set given in data option in jlp-function can be also the schedules data (that is also the

output of simulate-function). If a input line ends at '+' , '*, '=','(' then the next line is

also interpreted as continuation line (in addition to the ','). New version of jfig.exe.

Functions ask and askc have now option exit which makes ti possible to terminate

reading commands from a file.

V-0.9.2

Several bugs are corrected, and recovery from user errors improved. sign-function

added. err-option in stempolar function to provide error debugging in case of

problems. Similar option will be added to several other functions (user requests

welcome). Setting a feasible range in smooth function improved. Constraint option in

smooth changed into wish option. New function getobs by which one can access an

complete observation in a data set.

V-0.9.1

Functions save and unsave for saving objects into binary files and loading them back.

V-0.9.0

Principles for controlling printing defined. Not yet completely fulfilled. See chapter

'Controlling output'.

New option repeatdomains-> in problem function and option z-> in the jlp function.

V-0.8.9

Function jlp has new options area-> and notareavars-> which make it possible to use

schedule data which contain per area values. Jlp() has also options trans-> and

subtrans-> which make it possible to link transformations to cdata or xdata

temporarily. Function value(bit_matrix,row,col) has new option any-> which

indicates value to return 0 when trying to access out of range row or column.

Function simulate has option selector-> which makes it possible to use different

simulators in different stands depending on the stand conditions. There is new

function difference() which is making a list from a list by dropping elements of

another list.

V-0.8.8

Some bugs corrected. Jlp-function returns value for logical variable Started_jlp which

indicates if jlp inquiry functions can be used.

V-0.8.7

Some bugs corrected, and recovery from some user errors improved.

V-0.8.6

New function text which can be used to make text objects, and ;incl function can then

use the text object similarly as a file. Detection of syntax errors in problem function

improved.

V-0.8.5

New function result, which helps to use transformations as functions

V-0.8.4

In graphics or classify functions the distance between main ticks is taken into explicit

options dx- dy-> and dz-> instead of using third argument in xrange, yrange and

zrange to define dx,dy and dz. trans- function has now new options arg-> and result->,

and value function is changed to utilize these which makes definition of function like

transformation sets more natural.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

6

V-0.8.3

Closures-function improved, draw function has now new options y-> and points->, y-

option makes it possible to draw x as a function of y and points option makes it

possible to determine the number of points included in the graph.

V-0.8.2

A new bitmatrix function 'closures' for making neighbourhoods

V-0.8.1

New integer option for functions weight%schedw and weight%schedcum for

accessing the integer approximation for the JLP solution. New function

integerschedcum and integerschedw for the same purpose.

V-0.8.0

Improved control for printing, new options for smoothing splines, new functionality

for index(), value(), new object type bitmatrix, temporary association of

transformation set with a data set (trans-> option with all functions using data) stem

curve functions. It is possible to write figure objects into a file which can used by R

software to generate publication level graphics. (This manual is not completely up to

date, I try to update it soon). This version requires new jfig.exe to show figures.

V-0.7.8

It is possible to define j.par so that the io-window will closes by terminating the

program with end command.

V-0.7.8

Bugs corrected (second use of the same simulator failed, nested ;if();then structures

did not work, parsing of one transformation type failed, '!' comment in input

programming lines did not work)

V-0.7.7
Bugs corrected (in dot(),which(), extra space in if() then). If the output of arithmetic

operation or numeric function has been a general object, the object is first deleted, and

the output gets proper type (real variable). In earlier versions the object had to be

deleted explicitly before a general object could become again a real variable.

V-0.7.6

, ;elseif();then did not work, corrected.

function jlp() has option tole-> which was not described in the manual:

A corrected version of training file jex.txt.

V0.7.5

Bugs corrected. A bug corrected also in jfig.exe.

print function has now also data-option which makes it possible to print

 all observations from a data object (including those made by transformations)

The name of variable Buffer used in writing is changed into $Buffer

 which directly indicates that it is not put into the list of output

variables.

V0.7.4

Tree level simulation is possible in a simulator using treevars option. New matrix

functions elementsum and dotproduct. Additional spaces in some special contexts

caused errors. Now I have tried to correct these. A bug in the optimization related to

rejection of schedules is corrected.

V0.7.3 October 2003

Option matrix added to trans and simulator. Assignment a=b works also for matrices.

Bugs corrected.

V0.7.2 October 2003

Function branch added for the simulator

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

7

Functions showdir and setdir. added

Set-up of J (file j.par) changed.

V0.7.1 October 2003

Function classify and properties added

list elements can be accessed (see Shortcuts for object lists)

V0.7 October 2003

Graphics requires new version of the jfig-program.

Bit functions added. Filter option added to jlp-function. Function drawline added.

Color and style options added also to draw function. Function value can be used to

interpolate matrices and to return a value from transformations. Bugs corrected.

V0.6.5 September 17, 2003

Stability of the optimization improved. The jlp-function has now option

sparse->

which will indicate the use of sparse matrix routines in the optimization. In problems

with many domains this may improve the computation time significantly. With dense

problems sparse computations are slower

V0.6.04 August 21, 2003.

The stability of the optimization algorithm improved.

len(list) returns the number of elements in the list

New function: sort.

V0.6.03 August 8, 2003.

Tolerance parameters of jlp-function fine tuned.

The debug option of jlp can now have several values which indicate turning on and

off

the debug mode., e.g., debug->(0,100,200) means that debug is intially on then off at

pivot step 100 and then again on at step 200.

V0.6.02 August 4, 2003.

Computation in the lp-function jlp changed into double precision

V0.6.01 July 29, 2003 some bugs corrected and recovery from user errors improved

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

8

Table of contents

Conditions of use of the software ...2

Recent changes ...3

Table of contents ..8

1 Introduction ... 17

1.1 Hardware requirements ... 17

1.2 Software requirements ... 17

1.3 Set up of J .. 17

1.4 During the first use .. 18

1.5 Manual conventions .. 19

2 J objects ... 19

2.1 Object names ... 19

2.2 Copying object: a=b .. 20

2.3 Deleting objects: delete() ... 20

2.4 Object types ... 20

Real variables and constants ... 21

Character constants and variables ... 21

Text object .. 22

Logical values ... 22

Object lists .. 22

Matrices and vectors ... 22

Transformation set .. 22

Simulator .. 23

Data set ... 23

Problem definition object.. 23

Figure object ... 23

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

9

Function objects .. 23

Storage for variables ... 23

Bitmatrix ... 23

Trace set .. 24

2.5 Objects created automatically and default names .. 24

3 Command input and output ... 25

3.1 Input line and input paragraph ... 25

3.2 Input programming .. 26

3.2.1 Addresses in input programming ... 26
3.2.2 Changing "…" sequences .. 27
3.2.3 Input programming commands and control structures ... 27

;incl([file][,from->]) .. 28

;return.. 28

;do(i,start,last[,step]) ... 28

;enddo ... 29

;if(…) .. 29

;if(value);then ... 29

;elseif(value);then ... 29

;endif ... 30

;goto('adr') ... 30

3.2.4 Utilizing object lists: @list and @list(elem) .. 30
3.2.5 Shortcuts for implicit object lists: x1…x5, ?%x1 .. 31
3.2.6 Key shortcuts ... 32
3.2.7 Defining a text object with text function and using it in ;incl 32

=text() ... 32

3.3 Immediate operations starting with ';' .. 33

3.4 Controlling output ... 33

4 J transformations ... 33

4.1 Structure of general J functions ... 34

4.2 Common options ... 35

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

10

in-> ... 35

data-> .. 35

trans-> ... 35

err-> .. 36

4.3 J function for defining transformation sets: trans() .. 36

4.4 Executing a transformation set explicitly: call() .. 37

4.5 Using a transformation set as a function: result() .. 38

4.6 Using a transformation set as a function with an argument: value() 38

5 Arithmetic computations ... 39
5.1.1 Standard numeric expressions ... 39
5.1.2 Logical and relational expressions ... 40
5.1.3 Arithmetic functions .. 40

sqrt, exp, log, log10, abs ... 40

Real to integer conversion .. 40

min, max ... 41

sign ... 41

dot(c1,…,cn,x1,…,xn) .. 41

which(cond1,value1,…,condn,valuen[,valuedef]) .. 41

Trigonometric functions, argument in radians .. 41

Trigonometric functions, arguments in degrees .. 41

Inverse trigonometric functions, result in radians ... 41

Inverse trigonometric functions, result in degrees .. 41

Hyperbolic functions .. 42

5.1.4 Probability distributions ... 42

pdf(x[,mean][,sd]) ... 42

cdf(x[,mean][,sd]) ... 42

5.1.5 Random numbers ... 42

ran(seed) ... 42

rann(seed) ... 42

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

11

5.1.6 Special numeric functions .. 42

npv(interest,income1,…,incomen,time1,…,timen)... 42

5.1.7 List arithmetics .. 43

5.2 Derivatives .. 43

6 Matrix computations ... 44

6.1 Defining a matrix: matrix() .. 44

6.1.1 Matrix functions... 45

setmatrix(matrix,value [,diagonal->]) ... 45

t(a) ... 45

inverse(a) .. 45

dotproduct(a,b[,limit1][,limit2]) ... 46

elementsum(a[,limit1][,limit2][,row->][,column->]) .. 46

submatrix(a[,row->][,column->]) ... 46

nrows(a) .. 47

ncols(a) ... 47

len(a[,any->]) .. 47

index(val, a[,any->]) ... 47

sort(a,key->(key1[,key2])) .. 47

7 Transformation control structures ... 48

7.1 If .. 48

if() ... 48

if()then .. 48

elseif()then .. 49

else .. 49

endif .. 49

7.2 Loops ... 49

do(i,start,end[,step]) .. 49

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

12

enddo .. 49

cycle .. 49

exitdo .. 49

7.3 Return from a transformation set ... 49

return ... 49

errexit(arg1,…,argn) ... 50

7.4 Using addresses in transformation sets .. 50

7.4.1 Address in transformation set .. 50

goto('address') ... 50

jump('address') .. 50

back ... 50

8 IO-functions .. 51

print(arg1,…,argn[,maxlines->][data->][row->]) ... 51

read(file,format[,obj1,…,objn]) .. 51

write(file,format,val1,…,valn[,tab->]) .. 52

write(file,'t',t1,val1,t2,val2,…,tn,valn[,tab-]) ! case[2/5] 52

write(file,'w',w1,val1,w2,val2,…,wn,valn[,tab->]) ! case[3/5] 53

write(file,text_object) ! case[4/5] ... 53

Writing into $Buffer ! case[5/5] ... 53

close(file) .. 54

exist(filename) .. 54

ask(var1,…,varn[,default->][,q->][exit->]) ... 54

askc(chvar1,…,chvarn[,default->][,q->][exit->]) ... 55

9 Data sets .. 55

9.1 Creating a data object: data() .. 55

9.2 Modifying an existing data set: editdata() .. 58

9.3 Linking hierarchical data: linkdata() .. 58

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

13

9.4 Combining two observations in same class: crossed() ... 59

9.5 Utility functions for data sets .. 59

9.5.1 Extracting values of class variables: values() ... 59
9.5.2 Number of observations: nobs().. 60
9.5.3 Getting an observation from a data set: getobs() .. 61

9.6 Data set object ... 61

10 Statistical functions ... 62

10.1 Basic statistics:) ... 62

10.2 Covariance matrix: cov() ... 63

10.3 Correlation matrix: corr() .. 64

10.4 Classifying data: classify() ... 64

10.5 Linear regression: regr() ... 65

10.5.1 Computing the regression function: regr() ... 65
10.5.2 Using the regression object: value(),coef(),se(),mse(),rmse(),r2(), nobs(), len() 66

10.6 Smoothing spline: smooth() ... 67

10.6.1 Smoothing spline directly from data .. 67
10.6.2 Smoothing spline from classified data ... 68

11 Linear programming (JLP functions) .. 69

11.1 Problem definition: problem() .. 69

11.2 JLP problem definition object ... 70

11.3 Solving a problem: jlp() ... 71

11.4 Inquiry functions for the JLP solution ... 74

weights() ... 74

unit(i) .. 74

schedcum(i) .. 74

schedw(i) .. 74

weight(i) .. 74

partweights() ... 74

partunit(i) .. 75

partschedcum(i) .. 75

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

14

partschedw(i) .. 75

partweight(i) ... 75

price%unit(iunit) ... 75

weight%schedcum(sched) .. 75

price%schedcum(sched) ... 76

price%schedw(iunit,sched) ... 76

weight%schedw(iunit,sched[,integer->]) .. 76

integerschedw(iunit) ... 76

integerschedcum(iunit) ... 77

12 Simulator ... 77

12.1 Defining a simulator .. 77

12.1.1 Simulator definition: simulator() ... 77
12.1.2 Special functions used in a simulator ... 79

next(node1,…,nodem) .. 79

branch(node1,…,nodem) .. 79

cut() ... 80

loadtrees() ... 80

12.2 Using a simulator: simulate () .. 80

13 Plotting figures .. 83

Scatterplot: plotyx() .. 84

Drawing a function: draw() ... 84

Drawing line through points: drawline() ... 86

Drawing class information: drawclass() ... 87

14. Stem curves and volume functions .. 88

13.1 Stem splines... 88

=stemspline(h1,…,hn,d1,…,dn[,sort->] [print->]) .. 88

stempolar(stemspline,angle[,origo->][,err->]) .. 88

laasvol(species,dbh [,d6][,h]) .. 88

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

15

=laaspoly(species,dbh [,d6],h) .. 89

14 Utility functions .. 89

14.1 Working directory ... 89

showdir() ... 89

setdir(charval) ... 90

14.2 Timing functions ... 90

secnds() ... 90

cpu() .. 90

14.3 List functions. .. 90

=list(obj1,…,objn[,mask->] .. 90

=merge(obj1,…,objn) ... 91

=difference(list1,list2) .. 91

index(object,list[,any->]) .. 91

len(list[,any->]) ... 92

14.4 Getting value from an object: value(object,xvalue) .. 92

14.4.1 Interpolating a regular matrix: value(matrix,x) .. 92
14.4.2 Interpolating a classify-matrix: value(cl_matrix,xvalue) ... 93
14.4.3 Using a spline: value(spline,xvalue) .. 93
14.4.4 Getting values from a transformation set: value(tr_set,xvalue) 94
14.4.5 Gettting value of a list variable .. 95

14.5 Inverse function: valuex(object,yvalue) .. 95

14.5.1 Height of diameter using stemspline: valuex(stempline,diameter) 95

valuex(stemspline,diameter) ... 95

14.6 Interpolating points: interpolate() .. 95

interpolate(x0,x1[,x2],y0,y1[,y2],x] ... 95

14.7 Integrating a function .. 96

14.7.1 Integrating stem curve to get stem volumes ... 96

integrate(stem_spline,h1,h2) ... 96

14.8 Bit functions .. 96

setbits(ind, bit1,…,bitn) .. 96

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

16

clearbits(ind,bit1,…,bitn) .. 96

getbit(ind,bit) .. 97

=getbitch(ind[,from][,to]) ... 97

=bitmatrix (nrows[,colmax][,in->] [colmin->][,func->]) 98

value(bitmatrixobj,row[,col][,->any]) ... 98

setvalue (bitmatrixobj,row[,col],value) ... 99

nrows(bitmatrixobj) .. 99

ncols(bitmatrixobj) ... 99

=closures(bitmatrixobj) ... 99

14.9 Defining crossed variables: properties() ... 100

14.10 Storing values of variables .. 100

=store(var1,…,varn) ... 100

load(storage) ... 100

14.11 Saving object into files .. 101

save(filename,obj1,…,objn) ... 101

unsave(filename) ... 101

15 Error debugging and handling ... 101

15.1 Errors detected by J ... 101

15.2 Tracing variables ... 102

;trace(obj1,…,objn [,min->],[,max->][out->][,level->] [errexit->]) 102

;traceoff(obj1,…,objn) .. 103

trace(obj1,…,objn [,min->],[,max->][,level->] ... 103

[errexit->]) .. 103

tracetest(traceset) .. 103

An example of tracing functions ... 104

15.3 J does not work correctly ... 105

debug() .. 105

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

17

16 Acknowledgements ... 106
17 References ... 106
18 Index ... 106

1 Introduction

J is a general program for doing different tasks in data analysis, matrix computations,

simulation and optimization. It is intended to be used mainly in different forestry

related applications. It will supersede previous linear programming software JLP

(Lappi 1992) and the unpublished Jakta software.

J is operated using text command lines, but it contains tools which make this kind of

operation mode more efficient, e.g. input can be included from files so that a part of

the input lines is reinterpreted, input lines can be generated using loop constructs etc.

These properties are called here as input programming.

1.1 Hardware requirements

J is allocating dynamically memory for data structures. Stack size defined at link time

determines both the memory need and size of data structures which can be handled

during a J session. See Set up of J for details.

1.2 Software requirements

The current version of J is developed under Windows XP. It is running also at least

under Windows 2000 and Windows NT 4.0.

1.3 Set up of J

J is written in Compaq Visual Fortran 6.6 using Fortran 90. J is allocating

dynamically memory for all objects. It is using stack to store objects. The stack size is

set up in the linking time. If there is not enough stack size available, an error occurs

during the execution. It is possible change the size of the stack with EDITBIN

program. See Visual Fortran help for 'stack size'. Later possibly also versions with

different stack sizes will be available

The maximum number of available objects cannot be changed during a J session. It is

determined during the initialization. When J is started it tries to read first file j.par

from the default directory (see 'During the first use' chapter): The first line must look

like

*2000

or

!2000

where the number gives the maximum number of named objects. The default is 2000.

If the first character is '*' then the io-window will remain open if the program is

terminated with end command or by a Fortran error. This is the default if there is no

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

18

j.par file. If the first character is '!' then the program terminates completely at end

command or at a Fortran error.

Thereafter there can be any number of J commands executed directly (e.g. you can

give symbolic names for colour indexes and line types used in graphics).

Program j.exe is an ordinary console application. See the following section how to

modify the I/O window on the first run.

1.4 During the first use

It is reasonable to have the exe version in one folder, and to make shortcuts into all

working folders. Edit the properties of the shortcut (right click the shortcut icon) so

that the starting directory is the working directory. Copy also file j.par into each

working directory.

When the program is started, there appears a prompt, possibly after initialization

commands read from j.par.

sit>

Edit first the properties of the I/O window. The properties of the I/O window can be

changed by right-clicking the dos-icon at the upper left corner. It is reasonable to

make the screen buffer rather large (large height) so that the whole history of the J

session can be seen (this is done in the layout sheet of the shortcut properties). The

default height of the I/O window is also probably too small. The width should be at

least 81. If you would like to use mouse in copy and paste, put quick edit option on.

Also the colours of the text and background of the J window should be made

healthier for eyes (dark text, bright background).

To see that J is running properly, give your first commands at sit> prompt:

sit>a=7.7

sit>print(a)

The result should look like

a= 8.800000

sit>

Edit then the first command by using the arrow keys into a=8.8 and submit the

command, as well as the print command. Study also the copy and paste possibilities

under the Dos icon.

All input lines entered or generated by input programming at sit> prompt are called

commands. Commands are either input programming commands (input commands) or

commands that define operations in the J working environment (operation

commands). Input commands and operation commands may read and interpret more

input lines before returning control to the command level.

It is most convenient to develop J applications using include files. There is now

available an include file jex.txt on the download web page which gives several

examples and exercises.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

19

The working environment of J consists of named objects, temporary objects,

constants, functions, arithmetic operations and text paragraphs. Operation commands

define simple arithmetic operations or more complicated operations on the data

structures. Operation commands are defined using a transformation language. In

addition to operation commands, the same transformation language is used to define

transformation sets which are computed as a group and which can be linked in

different ways to data structures or other transformation sets.

1.5 Manual conventions

In the description of J functions, optional arguments or options are indicated by [].

Some elements may be necessary if some other optional elements are present. These

are described by detail. If there is no output for a operation command line, the object

Result is used as the default output. In many cases there is no output object, and a

possible output given is ignored. If an output is necessary, then '=' is put in front of the

function name. Specific implementation details of functions are given after '#'.

Expressions in the J language will be written in the Courier font.

This manual contains very few examples. More examples are given in the

accompanying include file jex.txt.

There are several limitations in the first versions of the J software. These limitations

are indicated by '***', and they will be hopefully removed from later versions.

2 J objects

There are several object types in the J environment. All objects except real and

character constants have names which can be used to refer to the object. Some of the

objects are elementary objects. Other objects are compound objects consisting of

elementary objects and possibly also of an object specific part. The named elements

of a compound object can be accessed also directly. Some element objects are

automatically created by the function which creates the compound object. Some

elements may be named independently, and the compound object just contains links to

the element objects.

There are both named and unnamed objects in a J workspace. Named objects are

created by giving output objects to J functions, and also by giving object names as

arguments for such J functions and options which accept unknown arguments. Real

numeric constants encountered in J commands are put into a vector which is used in

the same way as named real variables. Intermediate results of J commands and

transformations are stored into unnamed objects.

2.1 Object names

Object names start with letter or with '$'. Object names can contain any of symbols

'#.%§'. J is using '%' to name objects related to some other objects. E.g. function

stat(x1,x2,mean->) will store means of variables x1 and x2 into variables mean%x1

and mean%x2. Objects with name starting with '$' are not stored in the automatically

created lists of input and output variables when defining transformation sets.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

20

Names of objects having a predefined interpretation start with capital letter. The user

can freely use lower or upper case letters. J is case sensitive.

All objects known at a given point of a J session can be listed by command:

print(Names)

2.2 Copying object: a=b

A copy of object can be made by the assignment statement

a=b

#Note several objects cannot be copied in one statement as in arithmetic assignment.

2.3 Deleting objects: delete()

When an object with a given name is created, the name cannot be removed. With

delete function one can free all memory allocated for data structures needed by

general objects:

delete(obj1,…,objn)

After deleting an object, the name refers to a real variable (which is initialized by the

delete function into zero).

Note 1: Objects can equivalently (since J version 0.7.7) be deleted by giving

command

obj1,…,objn=0

Note 2: One can see how much memory each object is using with print(Names).

*** Currently, deleting a compound object will not delete the (named) element

objects. Thus e.g. deleting a data set will not delete the data matrix. It is now also

possible to delete a named element of a compound object and thus corrupt the

compound object (this will or will not properly realized by the function which is using

the compound object).

2.4 Object types

The following description describes shortly different object types available in J. More

detailed descriptions are given in connection of J functions which create the objects.

Object types may change during a J session. If the final object type is not yet known

during the interpretation time, the object is first created as a real variable.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

21

Real variables and constants

A real variable is a named object associated with a single real value. The value can be

directly defined at the command level, or the variable can get the value from data

structures. E.g.

a=sin(2.4)

h=data(read->(x1…x4)) ! x1,x2,x3,x4 are variables in the data set, and get their

values when doing operations for the data.

All numeric constants appearing in transformations will be stored as real constants.

Intermediate results in arithmetic calculations are stored into unnamed real variables.

Note 1: All objects have also an associated real value. In order to make arithmetic

operations fast, the argument types in simple arithmetic functions are not checked. If a

general object is used as an argument in an arithmetic operation, then the real value

associated with the object is used. This will usually prevent the program to stop due to

Fortran errors, but will produce unintended results.

Note 2: In this manual 'variable' refers to a J object whose type is real variable.

Character constants and variables

Character constants are generated by closing text within apostrophe signs (').

Character constants are used in I/O functions for file names, formats and to define text

to be written. E.g.

a=data(in->'file1.dat',read->(x1,x2))

Apostrophe character (') within a character constant is indicated with (~) (if the

character ~ is not present in the keyboard, it can be produced by <Alt>126, where

numbers are entered from the numeric keyboard) or with (|), e.g.

write('output.txt', '(~kukkuu=~,4f7.0)', sqrt(a))

Character variables get character constants as their values. An example of a character

variable definition:

cvar='file1.dat'

After defining a character variable, it can be used exactly as the character constants.

Note: The quotation mark (") has special meaning in the input programming. See

Input programming how to use character variables within character constants.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

22

Text object

Text object is an object which can store several lines of text. Several J functions

create associated text objects J function text can be used to create text objects

directly. All the names of J objects are also stored in a text object called Names. The

number of lines in a text object can be obtained with nrows function and the total

number of characters can be obtained with len function.

Logical values

There is no special object type for logical variables. Results of logical operations are

stored into temporary or named real variables so that 0 means False and 1 means

True. In logical tests all nonzero values will mean True. Thus e.g. if(6)b=7 is legal

statement, and variable b will get value 7. E.g.

sit>h=a.lt.b.and.b.le.8

sit>print(h)

h= 1.000000

Object lists

An object list is a list of named J object. See Shortcuts for object lists and List

functions for more details. Object lists can be used also as pointers to objects, see e.g.

the selector option of the simulate function.

Matrices and vectors

Matrices and vectors are generated with the matrix function or they are produced by

matrix operations, matrix functions or by other J functions. E.g. the data function is

producing a data matrix as a part of the compound data object. Matrix elements can be

used in arithmetic operations as input or output in similar way as real variables.

See Matrix computations.

Transformation set

A transformation set groups several operation commands together so that they can be

used for different purposes by J functions and J objects. A transformation set

contains the interpreted transformations and possibly the lists of input and output

variables. A transformation set also has an associated argument result variables. The

result variable is used in result function, and bot argument and result variables are

used in value function. For more details see J function for defining transformation

sets: trans().

Transformation sets can be called using call function, so that all transformations

defined in the set are done once. Function result also calls transformations but is also

returning a value. When transformation sets are linked to data objects, then the

transformations defined in transformation set are done separately for each

observation.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

23

There is an implicit transformation set $Cursor$ which is used to run the command

level. Another transformation set Val which is used to take care of the substitutions

of "-sequences in the input programming. Some J functions use also implicitly

transformations set $Cursor2$

Simulator

A simulator is a transformation set with a few additional parameters. The simulator is

described in the Simulator chapter.

Data set

Data set is a compound J object linking together data matrix, variable names,

transformations and links to other data sets in a data hierarchy. Data set object is

described in chapter Data sets.

Problem definition object

Problem definition object is produced by the problem function, and it is described in

Linear programming.

Figure object

Graphic functions produce figure objects. Each figure object can consist of several

subfigures. Each figure object stores information of x- and y axes, the range of all x-

and y-values, and for each subfigure information of the ranges of x and y in the

subfigure plus the subfigure type and the needed data values. See Plotting figures for

more information.

Function objects

Different J functions can produce function objects which need several associated

parameters and which can be used through value function.

Storage for variables

Especially in a simulator it may happen that a set of variables have certain values but

the same variables are used for other purposes for some time and then one would like

to get the previous values. There is special J object used to store the values, and

special store and load function to deal with the storage.

Bitmatrix

A bitmatrix is an object which can store in small memory space large matrices used to

indicate logical values. A bitmatrix object is produced by bitmatrix function or by

closures function from an existing bitmatrix. Bitmatrix values can be read from the

input stream or file or set by setvalue function.The values of bitmatrix elements can

be accessed with value function.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

24

Note: Also ordinary real variable can be used to store bits. Se bit functions

Trace set

Trace set is an object created by ;trace function which is used by tracetest function to

test if a set of variables has been updated. See chapter 'Tracing variables'

***Coming object types

J will contain at least following object types currently used in Jakta but not yet

implemented in J:

-covariance matrix

-interpolating spline function

-stem curve parameters of the nonparametric stem curve model of J. Lappi

2.5 Objects created automatically and default names

The following objects are created automatically at start-up:

Names text object containing the names of all

objects

Pi real variable having value 3.14… .

Result real variable used to store the result if

output variable is not given

Obs the default real variable used to indicate

the number of observation within a data set

$Cursor$ transformation object used to run the command

level

$Cursor2$ another implicit transformation set

Val transformation object used to extract values

of mathematical statements, used, e.g., in

input programming

$Data$ default data set name for a new data set

created by data-function

Data a list object used to indicate current data

sets

LastData a list objectreferring to the last data set

made, used as default data set

$ object name used to indicate console and '*'

format in reading and writing commands .

Duplicate a special variable used in data function when

duplicating observations

$Buffer a special character object used by the write

function

The following names are used as default names for objects created by J functions:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

25

Figure the default figure object created with graphics functions

T the default variable for the period number in a simulator

Unit the variable for the observation number in the unit data made by the

simulate function

The following objects are created by some functions whenever these functions are

called.

Object created

by

explanation

Tracevars ;trace cumulative list of all objects used in all ;trace functions

Tracestatus ;tracef row vector corresponding to Tracevars list indicating if tracing code is

generated

Tracelevel ;trace vector indicating the tracing level for variables having the tracing code.

Tracecount ;trace counts of changes

Traceminstatus ;trace idicates if minimum checking is effective

Tracemin ;trace minimum values

Tracemaxstatus ;trace idicates if maximum checking is effective

Tracemax ;trace maximum values

3 Command input and output
3.1 Input line and input paragraph

J reads input records from the current input channel which may be terminal, file or a

text object. When J interprets input lines, spaces between limiters and function or

object names are not significant. In input programming function start with ';' which is

part of the function name (and there can thus be no space immediately after ';'). If a

line (record) ends with ',' ,'+','*,'-','(','=' or with '>', then the next record is interpreted

as a continuation record. All continuation records together form one input line. If the

continuation is indicated by other continuation characters than the '>', the continuation

character is kept as a part of the input line. If continuation is indicated by '>' then '>'

will not remain in the logical input line. One input record can contain 256 characters,

and an input line can contain 2046 characters (I can be increase these if needed)

Note . '/' cannot be used as last character indicating the continuation of the line

because it can be legal last character indicating the end of a input paragraph.

** I may drop continuation with '>' in future (it is inherited from JLP)

When entering input lines from the keyboard, previous lines given from the keyboard

can be accessed and edited using the arrow keys. Input lines can be also pasted from

the clipboard using the right button of the mouse. Using Enter key of the keyboard

one can copy text from the J window into the clipboard. Console applications of

Compaq Fortran do not provide copy and paste using <cntrl>c and <cntrl>v.

All input lines starting with '*' will be comments, and in each line text starting with '!'

will also be interpreted as comment (!debug will put a debugging mode on for

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

26

interpretation of the line, but this debug information can be understood only by the

author). If a comment line starts with '*!', it will be printed.

Many J functions interpreted and executed at the command level need or can use a

group of text lines as input. In these cases the additional input lines are immediately

after the function. This group of lines is called input paragraph. The input paragraph

ends with '/', except the input paragraph of text function end with '//' as a text object

can contain ordinary input paragraphs.. It may be default for the function that there is

input paragraph following. When it is not a default, then the existence of the input

paragraph is indicated with option in-> without any value. An input paragraph can

contain input programming commands; the resulting text lines are transmitted to the J

function which interprets the input paragraph.

Examples of input paragraphs:

tr=trans()

a=log(b)

write($,'(~sinlog is=~,f4.0)',sin(a))

/

b=matrix(2,3,in->)

1,2,3

5,6,7

/

3.2 Input programming

The purpose of the input programming is to read or generate J commands or input

lines needed by J functions. The names of input programming commands start with

semicolon ';'. There can be no space between ';' and the following input programming

function. The syntax of input programming commands is the same as in J functions,

but the input programming functions cannot have an output. There are also controls

structures in the input programming. An input paragraph can contain input

programming structures.

3.2.1 Addresses in input programming

The included text files can contain addresses. Addresses define possible starting

points for the inclusion or jump addresses within an include file. An address starts

with semicolon (;)and ends with colon (:). There cannot be other text on the address

line. E.g.

;ad1:

see: ;incl ;goto

Note: The definition of a transformations set can also contain addresses. These

addresses start with a letter and end also with colon (:).

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

27

3.2.2 Changing "…" sequences

If an original input line contains text within quotation marks, then the sequence will

be replaced as follows. If a character variable is enclosed, then the value of the

character variable is substituted: E.g.

directory='D:\j\'

name='area1'

extension='svs'

then

in->'"directory""name"."extension"'

is equivalent to

in->'D:\j\area1.svs'

If the expression is not a character variable then J interprets the sequence as an

arithmetic expression and computes its value. Then the value is converted to character

string and substituted into the place. E.g. if nper is variable having value 10, then

lines

x#"nper+1"#"nper"=56

chv='code"nper"'

are translated into

x#11#10=56

chv='code10'

With "…" substitution one can define general macros which will get specific

interpretation by giving values for character and numeric parameters, and numeric

parameters can be utilized in variable names or other character strings. In

transformation sets one can shorten computation time by calculating values of

expressions in the interpretation time instead of doing computations repeatedly. E.g. if

there is in a data set transformation

x3="sin(Pi/4)"*x5

Then evaluation of sin(Pi/4) is done immediately, and the value is transmitted to

the transformation set as a real constant.

3.2.3 Input programming commands and control structures

The input programming has its own commands and control structures which will

deliver text lines to the command level.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

28

;incl([file][,from->])

Includes lines from a file or from a text object.

argument: file name (character constant or character variable) or a text object, if

omitted, then the same file is used as in the previous ;incl().

option: from gives the starting address for the inclusion, address is given without

starting ';' and ending ':'.

Examples:

;incl('file.txt')

;incl('file2.txt',from->'ad1')
;incl(from->'ad2')

Note: Include files can be nested up to 4 levels.

Note2.. See Chapter 'Input from a text object' how to include commands from a text

object.

;return

Closes the current include file, and changes the input channel to the upper include file

or to the console

Note: The include file can be open simultaneously in a text editor during the J session

if you open the file first with the text editor. If you want to include sections from a

changed file, remember to save the changes before include. It is a handy to have after

each ;return the text which can be used to include the previous section. E.g. in file
jlp.inc:

;test:

…

;return

;incl('jlp.inc',from->'test')

Then after editing the test section, copy the ;incl-line into clipboard and drop it into J

session by clicking the right button of the mouse.

Note 2: Transformation set can also contain return statement (without ';') which

stops execution of transformations in the transformation set.

;do(i,start,last[,step])

purpose: to generate a sequence of input lines in a loop

arguments: index variable, initial value, final value, step (optional, default is 1)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

29

;enddo

purpose: to close a ;do() loop

Note 1: There can be 6 nested ;do loops. It is not recommended to use ;do loops in

the console input even if this is possible.

Note 2. Form ;end do is also accepted.

Examples (in a include file):

;do(i,1,5,1)

per"i"=i*10

;enddo

g=trans()

;do(i,1,5,1)

per"i"="i"*10

;enddo

/

call(g)

It is necessary to use "i"*10 in the input paragraph of trans-function. If the

transformation line is per"i"=i*10, then during calling g-transformations, the value

of variable i is the same (5) for each transformation line generated by the ; do loop.

;if(…)

Generate input based on some condition. The text after the condition may be input

command or operation command or text within an input paragraph.

argument: logical or arithmetic statement producing zero (False) or nonzero value

(True)

Examples:

;if(Feasible);incl('report.inc',from->'summary')

;if(debuglevel.gt.2)print('Note: debug information in

file debug.txt')

;if(value);then

…

;elseif(value);then

…

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

30

;endif

Picks several lines into input based on some condition.

The argument for ;if or ;elseif is a logical or arithmetic statement (or variable)

producing zero (False) or nonzero value (True)

;goto('adr')

Start reading input from another place in an include file or include text object.

Jumping is allowed only forward.

argument: character constant or character variable, the address without starting ';' and

ending ':'

Example, in an include file:

;goto('ask')

…

;ask:

*what to do next: task1, task2 or end

askc(ad)

;goto(ad)

;task1:

…

;return

;task2:

…

;return

;end:

;return

Note: Software specialists do not recommend using goto structures, but e.g. the

structure of the example above may be useful. . If you want to use several sections

from a file, you can define a driver include file which contains just ;incl(,from-

>)- lines

3.2.4 Utilizing object lists: @list and @list(elem)

There is special object list object in J. An object list is generated with list function,

e.g.
xvar=list(vol#1,ba#1,dbh#1)

Thereafter @xvar in any place of the input line is equivalent to 'vol#1,ba#1,dbh#1'.

The names of individual variables in a list can be accessed using @xvar(elem)

where elem is a numeric expression obtaining a value between 1 and len(xvar).

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

31

There is subtle difference between expanding whole list using . @xvar and accessing

the names of individual variables in a list using @xvar(elem). When J expands the

whole list, it first interprets the whole transformation line as if @xvar would be a

single argument, and then finally it just replaces the index of the argument by all

indices of the elements in the list. When J encounters @xvar(elem)then the value of

index is first computed and then the name the corresponding variable in the list is

dropped into the same place before interpreting the line (i.e. J proceeds as in

interpreting "-sequences). Thus we may have:

alist=list(a,b)

@alist(1)#@alist(2)=@alist(1)*@alist(2)

which is equivalent to:

a#b=a*b

Some function can have lists as their arguments and some options can have lists as

their values. In those cases the name of the list object must be used without '@'. See

chapter List functions for more details about lists

Note: Lists can be also used to define pointers to single variables. E.g. a general

method defined in an include file (a macro) can refer to a variable using e.g. @arg.

Then we can give specific interpretation to the variable giving at the command level

arg=list(temperature) , and if we then include the macro from an include file then

all reference using @arg refer to the variable temperature. Of course we can make

the arg list to point to several variables by defining it to be a list of several objects..

3.2.5 Shortcuts for implicit object lists: x1…x5, ?%x1

Many functions can have several arguments, and also an option can refer to many

objects. There are some shortcut notations for referring to several objects.

If several objects have increasing numeric or character end in their names, then

implied object lists can be formed using the '...' construct. E.g.

stat(x4...x10)

stat(vara...vard)

are equivalent to

stat(x4,x5,x6,x7,x8,x9)

stat(vara,varb,varc,vard)

All variables having a common part in their name can be referred using '?' to indicate

the unspecified part. E.g. command

print(mean%?)

will print all variables whose name start with 'mean%', and command

mailto:.@arg

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

32

print(?%x1)

will print all variables whose name end with '%x1' (e.g. mean%x1, min%x1, etc.)

3.2.6 Key shortcuts

It is possible to define key shortcuts using character variables. If the whole input line

consists of the name of a single character variable, then the value of the character

variable is taken as the input line. E.g. input lines

I=';inc(~j.inc~)'

I

give the same result as

;inc('j.inc')

Note: the character variable I can be utilized according to the rules of the input

programming equivalently as

"I"

Key shortcut are handy when one is repeatedly including the same part from an

include file when testing e.g. a simulator.

3.2.7 Defining a text object with text function and using it in ;incl

Text objects are created as a side product by many J functions. Text objects can be

created directly by the text function which workes in a nonstandard way. The syntax

is:

=text()

…

//

output: a text object

The input paragraph ends exceptionally with '//' and not with '/'. The lines within the

input paragraph of text are put literally into the text object (i.e. even if there would be

input programming functions or structures included).

If the text object is used as an argument of ;incl() then everything goes as if the lines

would be included from a file. Using text objects this way makes it possible to define

text macros in the same file as other commands.

Examples:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

33

3.3 Immediate operations starting with ';'

Currently there are two special commands (;trace and ;traceoff) which looks like

input programming commands, but which can be characterized as 'immediate

operations' or 'interpreter directives'. There may be more such commands in the

future: The ;trace command tells that the transformation interpreted should start to

generate special tracing information among all the commands or transformations

given thereafter, and ;traceoff tells to stop to generate such code. See Error debugging

chapter for more information.

3.4 Controlling output

It is quite difficult to design the amount of printing logically in environment like J.

There should be enough output to see that J is doing what it should do. But using

input programming one can generate efficiently huge amount of commands which

could easily cause very much printing. I have now made a preliminary plan how to

control the amount of printing, but I have not yet implemented this plan consistently.

First we must separate printing related to the input programming or input paragraphs

and printing output of jlp functions. There are two global variables controlling either

of these, Printinput and Printoutput. The default value for both of these variables is 2.

Value 0 indicates no printing, value 1 less than default and values>2 indicate more

printing. Value 10 indicates debugging type of printing.

For each jlp function, there will be available print-> option which will locally guide

printing.

4 J transformations

Most operation commands affecting J objects can be entered directly at the command

level or packed into transformation object. In both cases the syntax and working is the

same. A command line can define arithmetic operations for real variables or matrices,

or they can include functions which operate on other J objects. General J functions

can have arithmetic statements in their arguments or in the option values. In some

cases the arguments must be object names. In principle it is possible to combine

several general J functions in the same operation command line, but there may not be

any useful applications yet, and possibly some error conditions would be generated.

Definition: A numeric function is a J function which returns a single real value.

These functions can be used within other transformations similarly as ordinary

arithmetic functions. E.g. weights() is a numeric function returning the number of

schedules having nonzero weight in a JLP-solution. Then

print(sqrt(weights())+Pi) is a legal transformation.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

34

4.1 Structure of general J functions

The general (non arithmetic) J functions are used either in statements

func(arg1,…,argn,opt1->value1,….,optm->valuem)

or

output=func(arg1,…,argn,opt1->value1,….,optm->valuem)

If there is no output for a function in a statement, then there can be three different

cases:

i) The function does not produce any output (if an output would be given, then J

would just ignore it)

 ii) The function is producing output, and a default name is used for the output (e.g.

Result for arithmetic and matrix operations, Figure in graphic functions).

iii) The function is a sub expression within a transformation consisting of several parts

including other function or arithmetic operations. Then the output is put into a

temporary unnamed object which is used by upper level functions as an argument

(e.g. a=inverse(b)*t(c))

If the value of an option is not a single object or numeric constant then it must be

enclosed in parenthesis.

Note: It is useful to think that options define additional argument sets for a function.

Actually an alternative for options would be to have long argument lists where the

position of an argument determines its interpretation. Hereafter generic term

'argument' may refer also to the value of an option.

*** When J is interpreting a function, it is checking that the option names and the

syntax are valid, but it is not checking if an option is used by the function. Also when

executing the function, the function is reacting to all options it recognises but it does

not notice if there are extra options, and these are thus just ignored..

An argument for a J function can be either functional statements producing a J object

as its value, or a name of J object. Some options can be without any argument

(indicating that the option is on)Examples:

a=sin(cos(c)+b) ! Usual arithmetic functions have numeric values as arguments,

! here the value of the argument of cos is obtained by 'computing' the value of real variable c.

stat(D,H,min->,max->) ! Here arguments must be variable names

plotyx(H,D,xrange->(int(min%D,5), ceiling(max%D,5))

!arguments of the function are variables, arguments of option xrange are numeric values

c=inverse(h+t(g)) ! The argument can be intermediate result from matrix computations.

If it is evident if a function or option should have object names or values as their

arguments, it is not indicated with a special notation. If the difference is emphasized,

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

35

then the values are indicated by val1,…valn, and objects by obj1,…,objn, or the

names of real variables are indicated by var1,…,varn.

There are some special options which do not refer to object names or values. Some

options define a small one-statement transformation to be used to compute something

repeatedly. E.g.

stat(D,H,filter->(sin(D).gt.cos(H+1)) ! only those observations are accepted

which pass the filter

draw(func->(sin($x)+1),x->$x,xrange->(0,10,1)) ! the func

option transmits the function to be drawn not a single value.

4.2 Common options

There are some options which are used in many J functions. Such options are e.g.

in->

If a J function needs to read some data or text, then the source is given in in-> option.

If there is no value for option, then the source is the following input paragraph. If the

value is a character constant or a character variable, then the source is the file with

that name.

data->

If the function is using data sets, the data sets are given in data-> option. All data sets

will be treated logically as a single data set. If a J function needs to access data, and

the data-> option is not given then J is used default data which is determined as

follows.

If the user has defined a object list Data consisting of one or more data sets, then

these will be used as the default data set. E.g.

Data=list(dataa,datab)

When a data set is created, it will automatically become the only element in LastData

list. If the Data list has not been defined and there is no data-> option, then the

LastData dataset will be used.

trans->

When a data set is created with data function, trans-> option defines a transformation

set which is permanently associated with the data set (unless the association is

changed with editdta function). In all function which are using data sets, trans->

option defines a transformation set which is used in this function. An example:

tr=trans()

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

36

xy=x*y

/

stat(xy,trans->tr)

err->

The err-> option indicates an transformation set which will be called if an error occurs

within a J function. In this transformation set one can e.g. print information about

values of variables ets. Currently this option is present only in stempoilar function, but

it will be included in many other functions.

4.3 J function for defining transformation sets: trans()

Transformation sets are created with the trans function.
=trans([input->][,matrix->][,arg->][,result->]

 [,local->] [,source->])

…

/

options:

input If present without any values, it indicates that if there are any arguments in

transformations which are not yet known they will be created as real variables during

interpretation time. If there are variables given as values for the option, then these

variables will be created as real variables (and no error occurs when referring to these

variables). But if there are other unknown arguments, an error occurs.

matrix The objects given in the option are interpreted to be matrices even if

the objects do not yet exist or if they are not matrices at the interpretation time. These

objects can be used in statements referring to elements of the matrices e.g.

a(1,i)=b(i). Arithmetic operations for the whole matrices (e.g. a=b) will also be

properly interpreted). The matrices need not be otherwise defined in the interpretation

time. The actual type and dimensions will be checked during execution time. If an

matrix already exist in the interpretation time, it need not be indicated in the matrix

option.

arg If the transformation set is defining a function to be used in the value function

then arg option gives the name of the variable used as the argument. Default is

variable Arg. The arg variable permanently associated with a transformation set can

be temporally bypassed by giving arg option in value function.

result If the transformation set is defining a function to be used in value function or

in result function then result option gives the name of the variable defining the output

of the function. Default is variable Result. The result variable associated with the

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

37

transformations set transformation can be temporally bypassed by giving result option

in value or result functions.

local Gives object names which are intended to be used only locally in the

transformation set. These objects will in fact be global objects but each object name

will have prefix formed from the transformation set name and '\'. Eg

.tr=trans(local->(a,b))

will make objects tr\a and tr\b.

source If value zero is given for the option, then a text object containing the source

code is not generated.

Each line in the input paragraph is read and interpreted and packed into a

transformation object, and associated input%tr and output%tr lists are created (t

rindicating the output of the trans function) . Objects having names starting with '$'

are not put into the input or output lists. The source code is saved in a text object

source%tr is option source->0 is not given.

*** Now there can be only one argument variable. If there is need for more argument

variables, I can allow more than one

4.4 Executing a transformation set explicitly: call()

Interpreted transformations in a transformation set can be automatically executed by

other J functions or they can be executed explicitly using call function.
call(tr)

argument: a transformation set

call function can be used at the command level or within transformation set.

Defining transformation sets which are called within other transformation sets one can

use some transformation as subroutines. But the transformation sets do not yet have

any system for argument passing, thus all objects within transformations are global

objects. Using input programming one can define transformations which get specific

interpretation after giving values to character variables and object lists. But these

transformations must be interpreted first with trans function before they can be used.

Note: A transformation sets can be used recursively, i.e. a transformation can be

called from itself. The depth of recursion is not controlled by J, so going too deep in

recursion will eventually lead to a system error.

Example:
tr=trans(input->level) !level will be initialized as

zero

write($,'(~recursion level~,f)',level)

level=level+1

call(tr)

/

Try it from the command level (it may take a while to reach the bottom):
call(tr)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

38

4.5 Using a transformation set as a function: result()

Interpreted transformations in a transformation set can be used as a function returning

a single numeric value using result function.
result(tr, [,result->])

argument: a transformation set

option: result , defines the variable whose value is the result of the function, default is

the result variable associated with the transformation set (the default result variable is

Result)

Note: A transformation sets can be used recursively, i.e. a transformation can be

called from itself. The depth of recursion is not controlled by J, so going too deep in

recursion will eventually lead to a system error.

Note 2. There is no argument passing for changing the values of variables used in the

transformation set as input variables. There is argument passing system for function

value which also returns a value from a transformation set.

** Later I'll add some kind of argument passing system.

Example:

sit>s=trans(input->)

trans>Result=a+b

trans>f=Result+1

trans>/

sit>a,b=1,3

sit>print(result(s),result(s,result->f))

 = 4.000000

 = 5.000000

4.6 Using a transformation set as a function with an
argument: value()

Interpreted transformations in a transformation set can be used as a function returning

a single numeric value using value function.
value(tr, xvalue[,arg->][,result->])

argument:

tr a transformation set

xvalue value put into the argument variable before calling the transformation set

options

arg variable used as the argument variable, it bypasses the argument variable

associated with the transformation set

 result , defines the variable whose value is the result of the function, default is the

result variable associated with the transformation set

See value function for more details

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

39

5 Arithmetic computations

An arithmetic expression is a statement producing single real value. Arithmetic

statements working with real variables have any of the three forms

output_variables=arithmetic expressions

matrix element= arithmetic expression

arithmetic expression

An arithmetic expression (statement producing a single real value) without an output

variable is converted into statement

Result= arithmetic expression.

The rules for handling the case where there can be several output variables or

arithmetic expressions are as follows:

If there are several output variables and one arithmetic expression, then each output

variable obtains the value of the expression. E.g.

y1...y4=sin(x1)

If there are equal number of output variables and expressions, then each expression

defines a assignment.. E.g.

y1...y3=1,2,sqrt(20)

If there are several output variables and more than one values but the number of

output variables and values no not match, an error occurs.

#Note: a copy of a general object can also be made with an assignment statement.

Only one object can be copied in one statement

5.1.1 Standard numeric expressions

An arithmetic expression consisting of ordinary arithmetic operations is formed in

standard way. The operations are in the order of their precedence:

unary minus

*** integer power

** real power

* multiplication

/ division

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

40

+ addition

- subtraction

The reason for having a different integer power is that it is faster to compute.

5.1.2 Logical and relational expressions

There are following (Fortran style) relational and logical operations (alternative

notation for relational comparisons):

.eq. == equal to

.ne. <> not equal

.gt. > greater than

.ge. >= greater or equal

.lt. < less than

.le. <= less or equal

.not. negation

.and. conjunction

.or. disjunction

.eqv. equivalent.

.neqv. not equivalent

The relational and logical expressions produce value 1 for True and value 0 for False.

Note: Testing equivalence can be done also using 'equal to' and 'not equal', as the

same truth value is expressed with the same numeric value.

5.1.3 Arithmetic functions

The arithmetic functions return single real value.

sqrt, exp, log, log10, abs

sqrt(x) square root, sqrt(0) is defined to be 0

sqrt2(x) sign(x)*sqrt(abs(x))

exp(x) e to power x

log(x) natural logarithm

log10(x) base 10 logarithm

abs(x) absolute value

Real to integer conversion

nint(x) nearest integer value

nint(x,modulo) returns modulo*nint(x/modulo) ,e.g.

nint(48,5)=50; nint(47,5)=45;

int(x) integer value obtained by truncation

int(x,modulo) returns modulo*int(x/modulo), e.g. int(48,5)=45

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

41

ceiling(x) smallest integer greater than or equal to x.

ceiling(x,modulo) returns modulo*ceiling(x/modulo), e.g. ceiling(47,5)=50.

floor(x) greatest integer smaller than or equal to x.

floor(x,modulo) returns modulo*floor(x/modulo), e.g. floor(47,5)=45.

min, max

min(x1,...,xn) minimum

max(x1,...,xn) maximum

sign

sign(val) returns 1 if val≥0 otherwise returns -1.

dot(c1,…,cn,x1,…,xn)

dot product, c1*x1+…cn*xn, see also matrix function dotproduct

which(cond1,value1,…,condn,valuen[,valuedef])

Takes first value for which the condition is true. If no condition is true then the

valuedef is given, and if there is no valuedef argument then the initial value of the

output is unchanged (producing probably unintended result, if which is used within

another expression).

Trigonometric functions, argument in radians

sin(x)

cos(x)

tan(x)

cot(x)

Trigonometric functions, arguments in degrees

sind(x)

cosd(x)

tand(x)

cotd(x)

Inverse trigonometric functions, result in radians

acos(x)

asin(x)

atan(x)

acotan(x)

Inverse trigonometric functions, result in degrees

acosd(x)

asind(x)

atand(x)

acotand(x)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

42

Hyperbolic functions

sinh(x)

cosh(x)

tanh(x)

5.1.4 Probability distributions

pdf(x[,mean][,sd])

Returns the density function of normal distribution. Default values for mean is 0 and

for sd 1 (if sd is given then the mean must be also given even if it is zero)

** Later there will be other distributions specified by option.

cdf(x[,mean][,sd])

Returns the cumulative distribution function for normal distribution. Default values

for mean is 0 and for sd 1 (if sd is given then the mean must be also given even if it is

zero)

** Later there will be other distributions specified by option.

5.1.5 Random numbers

ran(seed)

Returns a uniform random number between 0 and 1. Seed determines the exact

sequence. If there are no arguments, then the seed will be system generated. If ran is

called first with seed and then without , then previous seed applies.

rann(seed)

Returns normally distributed random number with mean zero and variance 1

***currently a quick and dirty generator

5.1.6 Special numeric functions

npv(interest,income1,…,incomen,time1,…,timen)

Returns net present value for income sequence income1,...,incomen, occurring at

times time1,…,timen when the interest percentage is interest.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

43

5.1.7 List arithmetics

We can do arithmetic operations for several variables using lists List arithmetics

work very much like matrix algebra, the difference is that arguments and results are in

named real variables.

***The list arithmetics has replace previous functions multcl,multcll,multll,multlll.

List arithmetics is easier to understand using examples (see jex.txt):

 alist=list(a1,a2,a3)

 blist=list(b1,b2,b3)

 clist=list(c1,c2,c3)

 @alist=1,2,3

 @blist=4,5,6

 clist=alist+blist !list=list+list

 print(@clist)

 c1= 5.000000

 c2= 7.000000

 c3= 9.000000

 clist=alist+5 !list plus real_value

 write($,$,@clist)

 6.000000 7.000000 8.000000

 clist=-alist !negative

 write($,$,@clist)

 -1.000000 -2.000000 -3.000000

 clist=blist-alist !subtract

 write($,$,@clist)

 3.000000 3.000000 3.000000

 clist=2*alist !list =real_value * list

 write($,$,@clist)

 2.000000 4.000000 6.000000

 clist=alist*blist ! element by element multiplication

 write($,$,@clist)

 4.000000 10.00000 18.00000

 cval=alist*blist ! if output is real variable then dot product is

computed

 print(cval)

 cval= 32.00000

**There cannot yet be several list arithmetic operations in the same line. It would be

possible to extend the list arithmetic also that way that elements of lists could be

matrices.

**Previous functions multcl, multcll, multll, multlll are

removed beacause they are now unnecessary.

5.2 Derivatives

d1,…,dn=der(x1,…,xn)

The der function computes derivatives of a function with respect to one or several

arguments using analytical derivation rules. The function is given in the next line.

Example

da,db=der(a,b)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

44

f=a*exp(-b*x)

There is available a macro file which is using the der function and ordinary linear

regression to compute nonlinear least squares regression.

6 Matrix computations

If the matrix dimensions agree, then matrix addition, subtraction and multiplication

can be defined using standard arithmetic operations. If in addition either argument is

scalar, then the scalar is added into each element. If in multiplication either argument

is a scalar, then each element is multiplied.

The following matrix functions are currently available:

6.1 Defining a matrix: matrix()

matrix(nrows,[ncols][,in->][diagonal->] [,form->]

[,values->])

(values if in-> option is present)

/

Generates a matrix.

arguments:

nrows number of rows

ncols number of columns, default is 1 (that is vectors are assumed to be column

vectors).

options:

in If in option is present then the values are given in a input paragraph

diagonal This option indicates that the matrix is diagonal. For diagonal matrix the

values given in values option or in the next input paragraph refer only to the diagonal

vector.

form The option indicates that each row is read separately. At the end of the row

there can be comments and if error occurs during reading, the input line causing the

error is printed. If form option is not given all the matrix values are read in one read

statement.

values The values are given within the option, transformations can be used to

define the values. If only one value is given then this value is given for all elements,

otherwise so many elements are filled in row order as there are values.

If values are not given through in or values options then the elements will be zero.

Examples:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

45

b=matrix(2,4,in->,form->)

1,2,3,4 ! there can be comments if there is form option

5,6,7,8

/

c=matrix(3,values->(sin(1),sin(2),cos(Pi)) !vector

Example of a J session defining matrix and its elements separately

a=matrix(2,2)

ta=trans()

do(i,1,2)

a(i,i)=i

enddo

/

call(ta)

Matrices are used as arguments for some J functions. Arithmetic operations +,- and *

work also for matrices. A copy of another matrix is obtained by assignment (e.g. a=b).

Matrix elements can be used both as input and output in transformations. Using

matrix option in trans function, matrices can be used in definition of transformation

set before actual matrices are created.

6.1.1 Matrix functions

setmatrix(matrix,value [,diagonal->])

Puts all elements equal to the given value, or all the diagonal element if diagonal->

option is present.

##Note, if m is matrix then substitution

M=1

makes M into a real variable.

t(a)

Computes the transpose of a matrix

argument: a matrix object

Note: transpose function can be used within a compound transformation, e.g.

h=b*t(a)

inverse(a)

Compute the inverse of a matrix

argument: a square matrix or a scalar, for a scalar argument inverse return the

reciprocal of the value

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

46

dotproduct(a,b[,limit1][,limit2])

Computes the dot product of two vectors

arguments: a and b are matrix objects, which are considered as vectors made by

putting rows after each other.

dotproduct(a,b,n) computes the dot product using n first element.

dotproduct(a,b,first,last) computes the dot product using elements from first to

last

Note: dotproduct using only part of elements is useful e.g. in a simulator where simulations

are done at tree level, and tree vectors reserve space for all potential trees.

Note 2. If a and b are column vectors, then dotproduct(a,b) is equivalent to
t(a)*b.

elementsum(a[,limit1][,limit2][,row->][,column->])

Computes the sum of elements of vector

argument: a is matrix object, if column or row option is not given and the

matrix is a general matrix (i.e. both dimensions>1) the matrix is considered as a

vector made by putting rows after each other.

elementsum(a,n) computes the sum using n first element.

elementsum(a,first,last) computes the sum using elements from first to.last

options:

row-> gives the row whose elements are added (limit1 and limit2 can

be used to specify a part of the row vector)

column->gives the columns whose elements are added (limit1 and limit2

can be used to specify a part oft eh row vector)

submatrix(a[,row->][,column->])

Takes a submatrix from a matrix

argument: a matrix

options:

row if only one value is given then this row is taken, two values

indicate a range of rows, the second must be negative of the upper

bound, e.g. row->(3,-5).

column if only one velue is given then this column is taken, two

values indicate a range of columns, the second value must be negative

of the upper bound, e.g. column->(3,-5)

diagonal indicates that the a column vector is made by picking the

diagonal elements from the whole matrix or from the row range

indicated by the row option.

**The syntax of row and column options is prepared to the case where

one can pick individual rows and columns. Currently only one row

(column) or range of consecutive rows (columns) is supported.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

47

nrows(a)

Returns the number of rows in a matrix

argument: a matrix object

Note: nrows works also for text objects,

ncols(a)

Returns the number of columns in the matrix

argument: a matrix object

len(a[,any->])

purpose: return the number of elements in the matrix (=nrows*ncols)

argument: a matrix object

option

any-> len returns value-1 if argument is not legal object for len (without any-> an

error occurs)

Note: len works also for text objects, returning the number of characters in a text

object, and for a list it return the number of elements in the list, and for regression

object number of parameters.

index(val, a[,any->])

purpose to locate the position of a number in a matrix (usually vector). Note, the

matrices are stored in row order.

arguments.

val a real value

a matrix object

option

any-> indicates that it will be searched between which two elements in the matrix val

is, it is assumed that the matrix is in increasing order. Let i denote the output of the

function. Then i is the index of element such that val ≥ ith element in the matrix. If val

is smaller than the first element, then the output will be 0.

Note: without any option, an error occurs if val is not found in the matrix.

Note2. when the first argument is list, then index function function returns the

position of an object in an object list, see list functions

sort(a,key->(key1[,key2]))

Makes a new matrix obtained by sorting all matrix columns according to one or two

columns.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

48

argument: a matrix object

Absolute value of key1 and the value of key2 must be legal column numbers. If

key1 is positive then the columns are sorted in ascending order, if key1 is negative

then the columns are sorted in descending order. If two keys are given, then first key

dominates. It is currently assumed that if there are two keys then the values in first

key column have integer values.

Note: If key2 is not given and key1 is positive, then the syntax is: sort(a,key-
>key1)

Note2: If there is no output, then the argument matrix is sorted in place.

Note3: The argument can be the data matrix of a data object. The data object will

remain a valid data object.

***later there will be sort function for data object so that the key variables can be

given using variable names. Currently index-function can be used to get the proper

column number of the data matrix.

*** Other matrix functions, e.g., computation of eigenvectors will become in later

versions.

7 Transformation control structures

Within J transformations, there can be similar controls structures as in the input

programming. The difference is that these will remain as part of the transformation

set. Only the 'if()output=…'structure is allowed at the command level, other are

possible only within a transformations set.

7.1 If

if()

The one line if-statement can have one of the following forms:
if()output=…

or
if()func()

A transformation is done depending on the truth value of the condition

Groups of transformations can depend on conditions using structure:

if()then

….

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

49

elseif()then

…

else

….

endif

There can be 4 nested if()then structures. If-then structures are not allowed at

command level.

7.2 Loops

The loop construction in J looks as follows:

do(i,start,end[,step])

enddo

Within a do –loop there can be cycle and exitdo statements

cycle

The cycle statement transfer the control to the enddo statement (i.e. to the next

iteration)

exitdo

The exitdo statement transfers the control to the next statement after enddo.

There can be 8 nested loops. Do loop is not allowed at command level.

7.3 Return from a transformation set

return

At return the execution of transformations in the current transformation set stops.

The control returns to the point where the transformation was called, e.g., to command

level, or to the function going through the data, or to an other transformation set.

Note: A return is automatically put to the end of a transformation set.

Note 2: Notice the difference between return and the input programming command

;return which closes an include file and thereafter input lines are read from an upper

include file or from the terminal.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

50

errexit(arg1,…,argn)

Stops executing transformations in a transformation set or in a simulator, and returns

control to the command level closing all open include files similarly as if J detects an

error. The values of arguments are printed. Useful in connection of testing if

arguments have legal values.

Example:

if(si.le.0)errexit('illegal value of variable si',si)

7.4 Using addresses in transformation sets
7.4.1 Address in transformation set

A transformation line within a transformation set can have an address. An address is

an alphanumeric expression ending with colon, e.g.

ad1: write($,'t',1,'kukuu')

Addresses can be utilized in goto and jump functions. Note the difference between

addresses of input programming and addresses within transformation sets: addresses

of input programming start with the semicolon (;).

goto('address')

purpose: to continue execution of transformations from the given address

jump('address')

purpose: to compute transformations within an internal subroutine starting with the

address and ending with back.

back

Returns control to the next transformation line following jump.

Note: It is not recommended to use goto according to modern computation practices.

It may be reasonable to use short internal subroutines using jump. Defining the

subroutines as separate transformation sets and using call is an alternative which

seems to be equally fast to compute.

Example:

s=trans()

i=0

goto('koe')

write($,'t',1,'here')

koe:write($,'t',1,'this',7,i)

write($,'t',1,'that')

i=i+1

if(i.lt.4)goto('koe')

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

51

jump('jump')

write($,'t',1,'after jump subroutine')

return

jump:write($,'t',1,'in subroutine')

back

/

8 IO-functions

print(arg1,…,argn[,maxlines->][data->][row->])

Print values of variables or information about objects.

arguments: arguments can be any J objects or values of arithmetic or logical

expressions

options:

maxlines the maximum number of lines printed for matrices, default 100.

data-> data sets . I f data option is given then arguments must be ordinary real

variables obtained from data.

row-> if a text object is printed, then the first value given in the row option gives the

first line to be printed. If a range of lines is printed, then the second argument must be

the negative of the last line to be printed (e.q. row->(10,-15)).Note that nrows

function can be used to get the number of rows.

For simple objects, all the object content is printed, for complicates objects only

summary information is printed. print(Names) will list the names, types and sizes of

all named J objects. The printing format is dependent on the object type.

*** The generated output does not look yet nice

read(file,format[,obj1,…,objn])

Reads real variables or matrices from a file. If there are no objects to be read, then a

record is bypassed.

arguments:

file the file name as a character variable or a character constant

format:

'b' unformatted (binary) data

'bn' unformatted, but for each record there is integer for the size of the record

'bi' binary format (without record structure), e.g. created with Matlab.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

52

'bis' binary data consisting of bytes, each value is converted to real value (the only

numeric data type in J)

'(….)' a Fortran format

$ or '*' the * format of Fortran

Note: Use ask or askc to read values from the terminal when reading lines from an

include file.

write(file,format,val1,…,valn[,tab->]) ! case[1/5]

Writes real values to a file or to the console

arguments:

file: variable $ (indicating the console), or the name of the file as a character variable

or a character constant, or variable $Buffer

format:

$ indicates the '*' format of Fortran, works only for numeric values.

A character expression, with the following possibilities:

A format starting with 'b' will indicate binary file. Now 'b' indicates ordinary

unformatted write, later there will be other binary formats

A Fortran format statement, e.g. (~the values were ~,4f6.0), with this format

pure text can be written by having no object to write (e.g. write('out.txt','(~kukuu~)')

For these formats, other arguments are supposed to be real variables or numeric

expressions. If they are not, then just the real value which is anyhow associated with

each J object is printed (usually it will be zero).

tab if format is a fortran format then, tab option indicates that sequences of spaces are

replaced by tab character so that written text can be easily converted to Ms Word

tables.

't' tabulation format, then the write -function is

write(file,'t',t1,val1,t2,val2,…,tn,valn[,tab-]) !

case[2/5]

Positive tab position values indicate that the value is written starting from that

position, negative tab positions indicate that the value is written up to that position.

The values can be either numeric expressions or character variables or character

constants. Tab positions can be in any order.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

53

tab option indicates that sequences of spaces are replaced by tab character so that

written text can be easily converted to Ms Word tables.

'w' width format, then the write function is

write(file,'w',w1,val1,w2,val2,…,wn,valn[,tab->]) !

case[3/5]

Positive w-value indicates that the value is right-justified into field of that length,

negative w-values indicate that the value is left-justified. The value can be either

numeric or character expression.

In both 't' and 'w' format with integer w-value, numeric values are converted into

character expression with 8 characters. This special formatting drops unnecessary

decimal points, leading and ending zeros, and will give as much precision as can be

obtained using 8 characters. If less than 8 characters are needed, then one can use

shorter fields than 8 characters.

A decimal w-value works similarly as f-format of Fortran, thus w-value 8.2 is

equivalent to f8.2. For technical reasons, the format with zero decimals but with

decimal point included must be given with w-value having decimal part .01, e.g. w

value 5.01 is equivalent to f5.0. Note that writing with zero decimal using e.g.

5,nint(value) will drop also the decimal point (corresponding to I format of

Fortran).

When first write to a file is done, then the file will be opened. If the file already exists

then J asks if the old file can be deleted. Note that before answering you can rename

the file. In that case the old file will be saved even if you answer 'y'

tab option indicates that sequences of spaces are replaced by tab character so that

written text can be easily converted to Ms Word tables..

write(file,text_object) ! case[4/5]

A text object can be written into a file using this form of write function.

Writing into $Buffer ! case[5/5]

If variable $Buffer is used as the file argument, then different write –function calls

can put information on the same line. Writing into $Buffer has the following logic.

Other parts of J consider $Buffer as real variable. The output buffer can be

initialized by giving value zero to $Buffer (i.e. giving command $Buffer=0), this is

the situation initially. One can write onto the buffer using $,'(...)', 't', or

'w' -formats. $ and '(...)' formats will also initialize the buffer first, so only

't', and 'w' formats can be used to collect buffer in several parts. After writing into

the buffer, the real variable $Buffer gets the current length of the output. The current

output buffer can be written into file using either

write(file,$Buffer)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

54

or $Buffer can be used similarly as character variables in writing with 'w' or 't'

format', e.g.

write($,'t',1,$Buffer,$Buffer+2,'kukuu')

In the above first $Buffer indicates the current content of the buffer. In the tab value

$Buffer+2 indicates that the tab position is two characters past the buffer length.

Note: You can put character information into the format (to put apostrophe within

character constant use (~),see Character constants ands variables).

Examples:

dir='d:\j\'

write('"dir"example.out','(~the values were

~,4f4.0)',@values)

close(file)

Closes an open file

argument: character variable or constant telling the name of an open file. The file has

been created and opened with write or save functions.

exist(filename)

Tests if a file exist,

argument: character variable or constant telling the name of the file

Funtion returns value 1 (True) if the file exists and 0 (False) if the file does not exist

ask(var1,…,varn[,default->][,q->][exit->])

Ask values for variables while reading commands from an include file.

arguments: 0-n real variables (need not exist before)

options:

default , default values for the asked variables

q text used in asking

exit if the value give in this option is read, then the control return to

command level similarly as if an error would occur. If there is no value given in this

option, then the exit takes place if the text given as answer is not a number.

If there are no arguments, then the value is asked for the output variable, otherwise

for the arguments. The value is interpreted, so it can be defined using transformations.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

55

Response with carriage return indicates that the variables get the default values. If

there is no default option or the default option has fewer values than there are

arguments, then the previous value of the variable is maintained (which is also printed

as the default value in asking)

Examples: (two first are equivalent):

a=ask(default->8)

ask(a,default->8)

print(ask()+ask()) ! ask without argument is a numeric function

askc(chvar1,…,chvarn[,default->][,q->][exit->])

Asks values for character variables when reading commands from an include file.

arguments: 0-n character variables (need not exist before)

options:

default default character stings

q text used in asking

exit if the character constant or variable given in this option is read, then

the control return to command level similarly as if an error would occur.

If there are no arguments, then the value is asked for the output variable, otherwise

for the arguments.

Response with carriage return indicates that the variable gets the default value. If

there is no default option or the default option has fewer values than there are

arguments, then the variable will be unchanged (i.e. it may remain also as another

object type than character variable).

9 Data sets
9.1 Creating a data object: data()

Data sets are created with the data function. Two linked data sets can be create with

the same function call (using option subdata and options thereafter in the following

description). A data set can be modified with editdata function. Data sets can be

linked also afterwards with the linkdata function.

A data set is created by a data function

d=data(read->[,in->][,form->][,maketrans->]

[,readfirst->][,trans->][,keep->][,obs->]

[,filter->][,reject->]

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

56

[,subdata->][,subread->][,subin->]

[,subform->][,submaketrans->]

[,subkeep->][,subobs->][,nobsw->][,nobswcum->][,obsw->]

[,duplicate->][,oldsubobs->][,oldobsw->][,nobs->]

[,buffersize->][,par->])

Output: Data set to be created If there is no output then the default is $Data$.

Options:

read variables read from the input file

in input file. If no file given, data is read from the following input paragraph. If

either of read or in option is given, then both options must be present.

form format, default is '*' format of Fortran, this can be indicated explicitly by $, 'b'

is binary. Any general Fortran format can be given as character constant or variable

(e.g. '(4f4.1,1x,f4.3)'.

maketrans transformations computed for each observation when reading the data

readfirst variables read from the first line of the input file, if no variables are

given, then anyhow first line is read and printed (a text header)

trans transformation set associated with the data set when data set is

used later, does not have effect in making the data, and can be given later with

editdata function.

keep variables kept in the data set, default: all read variables plus the output

variables of maketrans transformations.

obs variable which gets automatically the observation number when working with

the data, variable is not stored in the data matrix, default: Obs. When working with

hierarchical data it is reasonable to give obs variable for each data set.

filter logical or arithmetic statement (nonzero value indicating True)

describing which observations will be accepted to the data set. Maketrans-

transformations are computed before using filter.

reject logical or arithmetic statement (nonzero value indicating True)

describing which observations will be rejected from the data set, if filter option is

given then reject statement is checked for observations which have passed the filter.

subdata the name of the lower level data set to be created.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

57

subread,….subobs sub data options similar as read…obs for the upper level data.

(subform->'bgaya' is the format for the Gaya system)

nobsw A variable in the upper data telling how many subdata observations there is

under each upper level observation, necessary if subdata option is present.

nobswcum A variable telling the cumulative number of subdata observations up

to the current upper data observation but not including it. This is useful when

accessing the data matrix one upper level unit by time, i.e., the observation numbers

within upper level observation are nobswcum+1,…,nobswcum+nobsw

obsw variable in the subdata which automatically will get the number of

observation within the current upper level observation, i.e. obsw variable gets values

from 1 to the value of nobsw-variable, default is 'obsw%obs_variable'.

duplicate->(duplicates-transformations,duplicate-transformations) The

two transformation set arguments describe how observations in the subdata will be

duplicated. The first transformation set should have Duplicates as an output variable

so that the value of Duplicates tells how many duplicates are made (0= no

duplication). The second transformation set defines how the values of subdata

variables are determined for each duplicate. The number of duplicate is transmitted to

the variable Duplicate. These transformations are called also when Duplicate=0. This

means that when there is the duplicate option, then all transformations for the

subdata can be defined in the duplicate transformation set, and submaketrans is not

necessary.

oldsubobs if there are duplications of sub-observations, then this option gives the

variable into which the original observation number is put. This can be stored in the

subdata by putting it into subkeep list, or, if subkeep option is not given then this

variable is automatically put into the keep list of the subdata.

oldobsw: This works similarly with respect to the initial obsw variable as

oldsubobs works for initial obs variable.

nobs Number of observations, if known beforehand. Currently a data set can be

created from the air by using nobs option and maketrans transformation, which can

use obs variable as argument. Creation of data set this way is indicated by the

presence of nobs option and absence of in and read options.

buffersize the number of observations put into one temporary working buffer. The

default is 10000. Experimentation with different values of buffersize in huge data

sets may result in more efficient buffersize than is the default.

par additional parameters for reading. If subform option is 'bgaya' then par option

can be given in form par->(ngvar,npvar) where ngvar is the number of nonperiodic x-

variables and npvar is the number of period specific x-variables for each period.

Default values are par->(8,93)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

58

***In future the use of nobs option will make data-function faster also when

reading data from a file.

data function will create a data set object, which is a compound object consisting of

links to data matrix, etc. see Data set object.

Note. See common options section for how data sets used in other J functions will be

defined.

Note 2: All read variables are treated as real variables.

Note 3. The in and subin can refer to the same file, or if both are without arguments

then data are in the following input paragraph. In this case data function read first

one upper level record and then nobsw lower level records.

9.2 Modifying an existing data set: editdata()

editdata(data_set,trans->)

argument: data_set , a data set object

option: trans-> , gives the transformation to be done for each observation when

dealing with the data. If removing existing transformation without a new one, give

trans->, or trans->0

Changes the transformation set associated with the data set

***Coming ways to change old data sets, make new data sets from old ones, get

observation matrix from matrix made by other means. It will be possible to keep the

data in a file in cases there is shortage of memory.

9.3 Linking hierarchical data: linkdata()

linkdata(data->,subdata->,nobsw->[,obsw->])

Links hierarchical data sets.

options:

data the name of the upper level data set

subdata the name of the lower data set

nobsw the name of variable telling the number of lower level observations for each

upper level observation, now nobsw must be an existing variable.

***It will be later possible to link data when the class variable is in the subdata.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

59

obsw variable which will automatically get the number of lower level observation

within each upper level observation. If not given, then this variable will be
obsw%obs_variable_of_the_upper_data

Note: In most cases links between data sets can be either made using sub-options of

data function or linkdata function. If there is need to duplicate lower level

observations, then this can be currently made only in data function. Also when the

data for both the upper level and lower level data are read from the same file, then

data function must be used.

Note 2: When using linked data in other functions, the values of the upper level

variables are automatically obtained when accessing lower level observations. Which

is the observational unit in each function is determined which data set is given in data

option or defined using Data list.

9.4 Combining two observations in same class: crossed()

=crossed(data->,class->,trans->,keep->,dummy->)

output: an data set

For each class defined by the class variable, each observation pairs form a new

observation in the output data set. Assume that crossed is called with trans->tr and

dummy->same. The algorithm can be described

do c=1, number of classes

do i=first observation in class, last observation in class

$Stage=1

call transformation set tr

do j=first observation in class, last observation in class

if(i==j)then

 same=1

else

 same=0

endif

$Stage=2

call transformation set tr

make new observation in the output data storing variables defined in keep->

enddo over j

enddo over i

enddo over classes

9.5 Utility functions for data sets
9.5.1 Extracting values of class variables: values()

=values(variable[,data->])

Gets all different values of a variable in one or several datasets into a vector.

output: A columns vector getting different values

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

60

argument: a data set variable (either stored in the data matrix or generated with the

associated transformations).

option: data gives the data sets searched

Note 1. the values found will be sorted in an increasing order

Note 2. After getting the values into a vector, the number of different values can be

obtained using ncols function.

***Later there will be different ways to utilize the obtained values in connection of

data sets. Now the values function can be utilized e.g. in generating domains for all

different owners or regions found in data.

9.5.2 Number of observations: nobs()

nobs(dataset)

Gets the number of observations in a data set.

argument : a data set

Note: index function described in List functions chapter is needed when doing

transformations using the data matrix of a data object

An example of nobs and index:

Fast:

do(i,2,nobs(dat))

write('outfile.dat','b',

matrix%dat(i,"index(x4,keep%dat)")-matrix%dat(i-1,

"index(x4,keep%dat)"))

enddo

Fast:

inx4=index(x4,keep%dat)

do(i,2,nobs(dat))

write('outfile.dat','b',

matrix%dat(i,inx4)-matrix%dat(i-1,inx4))

enddo

Slow:

do(i,2,nobs(dat))

write('outfile.dat','b',

matrix%dat(i,index(x4,keep%dat))-matrix%dat(i-

1,index(x4,keep%dat)))

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

61

enddo

9.5.3 Getting an observation from a data set: getobs()

getobs(dataset,obs[trans->])

Get the values of all variables associated with observation obs in data set dataset.

First all the variables stored in row obs in the data matrix are put into the

corresponding real variables. If a transformation set is permanently associated with

the data set, these transformations are executed. Then if there is trans-> option

present, these transformations are also executed-.

9.6 Data set object

Data set is a compound J object created by the data function. A data set is linking

together data, variable names, case names (coming later), transformations, links to

other data sets. In the following (A) indicates that the part is created automatically,

(N) that the part is necessary and the user can give the name for the part, and (O)

indicates that the part may or may not exist. The name of the data set is indicated by

data.

parts:

matrix%data (A) matrix containing the data values

keep%data (A) variable list telling the variables in the data (columns names)

***later: cases (O): link to case names

prolog (O) link to initialization transformations done before starting to handle the data

trans (O) link to transformations done for each observation

epilog (O)= link to transformations done after last observation

vars%data(A) variable list merging keep%data and output%trans

obs (N) link to variable which will obtain the observation number automatically

(default: Obs)

up (O)= link to an upper level data set whose subdata this is (e.g. stand data for the

tree data)

sub (O)= link to the lower level subdata (e.g. schedule data for the stand data)

nlink (O)=link to the variable telling the # of lower level observations

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

62

Note: matrix%data , keep%data and vars%data are named element object which can

be accessed also directly.

10 Statistical functions
10.1 Basic statistics:)

stat(var1,…,varn[,data->][weight->][,min->]

[,max->][,mean->][,var->][,sd->][,sum->]

[,nobs->][,filter->][reject->][,trans->][transafter->])

Computes and prints basic statistics from data sets.

arguments: variables for which the statistics are computed.

options:

data-> data sets , see section Common options for default

weight-> gives the weight of each observations if weighted means and variances

are computed. The weight can given in form of transformation or it can be a variable

in the data set

min defines to which variables the minima are stored. If the value is character

constant or character variable, then the name is formed by concatenating the character

with the name of the argument variable. E.g. stat(x1,x2,min->'pien%') stores

minimums into variables pien%x1 and pien%x2. The default value for min is 'min%'.

If the values of the min option are variables, then the minima are stored into these

variables.

max maxima are stored, works as min

mean means are stored

var variances are stored

sd standard deviations are stored

sum sums are stored, (note that sums are not printed automatically)

nobs gives variable which will get the number of accepted observations, default is

variable 'nobs'. If all observations are rejected due to filter or reject option, then an

error occurs unless nobs option is given (utilizing the nobs variable the user can

control how the execution continues)

trans transformation set which is executed for each observation. If

there is a transformation set associated with the data set, those

transformations are computed first.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

63

filter logical or arithmetic statement (nonzero value indicating True)

describing which observations will be accepted. Trans-transformations are computed

before using filter.

reject logical or arithmetic statement (nonzero value indicating True)

describing which observations will be rejected, if filter option is given then reject

statement is checked for observations which have passed the filter.

transafter->transformation set which is executed for each observation
which has passed the filter and is not rejected by the reject option.

stat prints min, max, means, sd and sd of the mean computed as sd/sqrt(number of

observations)

Example:

stat(area,data->cd,sum->bon20,filter->(site.ge.18.5))

stat(ba,data->cd,weight->area)

stat(vol,weight->(1/dbh***2)

10.2 Covariance matrix: cov()

cov(var1,…,varn[,data->][weight->][,filter->]

[reject->][,trans->][transafter->])

Computes variance –covariance matrix .

arguments: variables for which the variances and covarainces are computed.

options:

data-> data sets , see section Common options for default

weight-> gives the weight of each observations if weighted means and variances

are computed. The weight can given in form of transformation or it can be a variable

in the data set

trans transformation set which is executed for each observation. If

there is a transformation set associated with the data set, those

transformations are computed first.

filter logical or arithmetic statement (nonzero value indicating True)

describing which observations will be accepted. Trans-transforamtions are computed

before using filter.

reject logical or arithmetic statement (nonzero value indicating True)

describing which observations will be rejected, if filter option is given then reject

statement is checked for observations which have passed the filter.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

64

transafter->transformation set which is executed for each observation
which has passed the filter and is not rejected by the reject option.

**Currently the cov function does not print the matrix, it can be printed using print

function.

10.3 Correlation matrix: corr()

corr(var1,…,varn[,data->][weight->][,filter->]

[reject->][,trans->][transafter->])

Computes the correlation matrix. Arguments and option are as in the previous cov

function. If a variable has zero variance, the correlation with the same variable is

defiend to be one and correlations with other variables are zero.

10.4 Classifying data: classify()

classify([var1,…,varn][,data->],x->[,xrange->][,dx->]

[,classes][,z->][,zrange->][,dz->][,mean->]

[trans->][,filter->][reject->][transafter->])

Classifies data with respect to one or two variables, get class frequencies and means

of argument variables

output: a matrix containing class information (details given below)

arguments: variables for which class means are computed.

options:

data data sets used, if option is not given default data sets are used

x the first variable defining classes

xrange->(min,max) defines the range of x variable and class width if several values

of x variable are put into the same class. If xrange is not given all values of the x

variable define its own class.

dx-> defines the class width for a continuous x variable. If dx is not given, range is

divided into 7 classes.

classes: number of classes, has effect if dx is not defiined in xrange

z: the second variable defining classes in two dimensional classification.

zrange->(min,max) defines the range and class width for a continuous z variable.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

65

dz-> defines the class width for a continuous z variable.

mean if z variable is given, class means are stored in a matrix given in the mean

option. (*** details fixed later)

trans

filter logical or arithmetic statement (nonzero value indicating True)

describing which observations will be accepted

reject logical or arithmetic statement (nonzero value indicating True)

describing which observations will be rejected, if filter option is given then reject

statement is checked for observations which have passed the filter.

transafter->transformation set which is executed for each observation
which has passed the filter and is not rejected by the reject option.

#Operation:

 If z variable is not given then first row both in printed output and in the output matrix

(if given) contains class means of the x variable. In the output matrix the last element

is zero. Second row shows number of observations in class, and the last element is the

total number of observations. Third row shows the class means of the argument

variable. The fourth row in the output matrix shows the class standard deviations, and

the last element is the overall standard deviation.

If z variable is given the first column shows the class means of z variable.

10.5 Linear regression: regr()
10.5.1 Computing the regression function: regr()

regr(y,x1,…,xn[,data->][,noint->][trans->][,filter-

>][,reject->][transafter->])

Computes a linear regression function.

output : a regression object, utilized through value, coef, se, rmse, mse,r2 functions

arguments: y-variable, x-variables (not including constant term)

options:

data data sets used

noint intercept is not included (default is to include)

trans

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

66

filter logical or arithmetic statement (nonzero value indicating True)

describing which observations will be accepted

reject

transafter

10.5.2 Using the regression object:
value(),coef(),se(),mse(),rmse(),r2(), nobs(), len()

When an regression object has been created with regr function, it can be utilized using

the following functions.

value(regr_object[,x1,…,xn])

Computes the value of the regression function. If the regression object is the only

argument, then the current values of the independent variables are used. If the values

of the independent variables are given as arguments, they are used. They must be in

the same order as in the regr function which created the object.

coef(regr_object,xvar)

Gives the value of the coefficient of a x-varaible.

Note: coef(regr_object,1) returns the intercept

se(regr_object,xvar)

Gives the estimated standard error of the coefficient of a x-variable.

Note: se(regr_object,1) returns the standard error of the intercept

mse(regr_object)

Returns the MSE of the regression.

rmse(regr_object)

Returns the RMSE of the regression

r2(regr_object)

Returns the R
2
 of the regression

nobs(regr_object)

return number of observations used to compute trhe regression

len(regr_object[,any->])

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

67

return the number of prameters in the regression (including intercept)

option

any-> len returns value-1 if argument is not legal object for len (without any-> an

error occurs)

*** Functions for accessing F and p values will be added when needed.

***Jakta contains also nonlinear regression. This will be also available in J.

10.6 Smoothing spline: smooth()

A smoothing spline can be computed with smooth function. This function is using an

algorithm gcvspl from Netlib

10.6.1 Smoothing spline directly from data

For small data sets smoothing spline can be computed using each value of the x

variable as a knot point.
=smooth(y,x,[data->][,variance->][,modeldf->][,degree-

>][,wish->])

output: a smoothing spline object, can be used through value(output,x), and

parameters of the fit can be accessed by param(output,pram_index)

arguments: dependent variable, independent variable

options:

data data sets used

variance Variance of each observation (weight will be inverse of variance). Can

be a variable or statement function.

modeldf effective degrees of freedom used for model parameters, if not given

then the generalized cross validation value is minimized, and the the effective

degrees of freedom is obtained as an output parameter which can be accesses through

param(output,3)

degree degree of polynomial used, feasible values are 1,3, … corresponding to

linear, cubic, etc functions.. If even value is given then it is turned into the nearest

lower value. Deafult is degree->3.

wish->(x1,y1,w1,…,xn,yn,wn) gives wishes for the points through which the spline

should go. For each triplet (xi.yi,wi) and artificial data point with x value xi and y

value yi and weight wi is added to the data. The larger is the weight the closer the

smoothing spline will be to the point. Weight 1 is the weight for one observation.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

68

The parameters of the fitting are printed, and they can be accessed through param

function:

param(output,1)=Generalized Cross Validation Value

param(output,2= Mean Squared Residual

param(output,3)=Estimated df for the model (=modeldf , if this option is given)give

param(output,5)=Estimated true MSE

param(output,6)=Gauss Markov variance

param(output,7)= number of data points

*** Currently this does not work if the same x-value appears several times. In that

case the smoothing spline can be computed by first classifying the data.

10.6.2 Smoothing spline from classified data

For large data sets the smoothing spline can be computed by first computing class

means using classify function, and the computing the smoothing spline using class

means as data point.
=smooth(class_matrix[,variance->][,modeldf->][,degree->]

[,wish->][,min->][,max->][,maxiter->][,iterations->])

output: a smoothing spline object, can be used through value function

arguments: class_matrix is a matrix of class means generated by classify

function.

options:

variance Variance of each observation (weight will be inverse of variance). Can

be a variable or statement function. It is taken automatically into account that the

variance of the class mean of the y variable is inversely proportional to the number of

observations in the class.

modeldf, degree: see above

wish->(x1,y1,w1,…,xn,yn,wn)

min->(fmina [,fminb]) The required lower bound for the function. If only one value

(fmina) is given then after obtaining the intial smoothin spline it is checked if the

value of spline if samller than fmina and if it is, the y-value of the point is repalace

with fmina, and the smoothing spline is computed again. It may, however, be that the

values of the smoothing spline are not smaller than fmina. If value fminb is given

(fminb<fmina), then the y values are replaced with fmina-(iteration_count-1)*(fmina-

fminb), and the procedure is repated until four iterations.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

69

max->(fmaxa [,fmaxb]) The required upper bound for the function. Works as min->.

maxiter-> give the maximum number of iterations to get the functioin to obay min or

max constraints, default is 6.

iterations-> gives the variable which obtains the used number of iterations. Can be

useful to stop automated iterations to look mre closely to problematic cases.

**Note that min-> and max-options do not yet work for smoothing data.

***Jakta contains also regression splines. Perhaps these are not needed as J has

smoothing splines.

11 Linear programming (JLP functions)

See Lappi (1992) for the background of the linear programming as used in J.

11.1 Problem definition: problem()

=problem([repeatdomains->])

…

/

Define a lp problem for jlp function.

output: a problem definition object

option: repeatdomains, if this is option is given then the same domain definition can

be in several places of the problem definition, otherwise having the same domain in

different places causes an error (as this is usually not what was intended)

The problem definition paragraph can have two types of lines: problem rows and

domain rows. Examples of problem definitions showing the syntax.

pr=problem() !ordinary lp-problem

7*z2+6*z3-z4==min

2*z1+6.1*z2 >2 <8+b

(a+log(b))*z5-z8=0

-z7+z1>8

/

prx=problem() ! timber management planning problem

All:

npv.0==max

sitetype.eq.2: domain7:

income.2-income.1>0

/

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

70

Currently the objective row must be first row (this will be liberated later). Function:

problem interprets the problem paragraph, and extracts the coefficients of variables in

the object row and in constraint rows. The coefficients can be defined using arithmetic

statements utilizing the input programming "-sequence or enclosing the coefficient in

parenthesis. The right hand side can utilize arithmetic computations without

parenthesis The values are computed immediately. So if the variables used in

coefficients change their values later, the problem-function must be computed again

in order to get updated coefficients. Note that a problem definition does not yet define

a JLP task. Final interpretation is possibly only when the problem definition and

simulated data are linked in a call to jlp function. At the problem definition stage it is

not yet known which variables are z-variables and which are x-variables (see Lappi

1992).

Note that ‘<’ means less or equal, and ‘>’ means greater or equal. The equality is

always part of linear programming constraints.

Note that there can be transformations in coefficients and on the rhs. These

transformations are evaluated at the time when problem function is computed, and the

variables appearing in transformations are not part of the optimization.

Note also that problem definition rows are not in one-to-one relation to the constraint

rows in the final lp problem. A problem definition row may belong to several

domains, thus several lp-constraint rows may be generated from one problem

definition row. In the optimization algorithm, the objective row is taken from its

arbitrary position in the problem definition to become row 0.

Domain definitions describe logical or arithmetic statements indicating for what

management units the following rows apply. Problem will generate problem definition

object, which is described below:

11.2 JLP problem definition object

generated with: problem

used in: jlp

JLP problem is a compound object created by problem-function (similar to JLP

problem definition) for defining lp-problems.

parts:

rows%problem is a text object containing the rows of the problem definition

domains%problem is a text object containing the domain definitions or names used in

the problem

domainvar%problem variable list containing the variables used in the domain

definition

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

71

vars%problem variable list containing the variables used in the problem definition

rhs%problem vector containing the lower bound for each row

rhs2%problem vector containing the upper bounds for each row

All coefficients of the constraints in a packed format.

Note: the rhs- vectors can be modified (by arithmetic or matrix operations) before and

between calls of the jlp-function utilizing the same problem definition.

11.3 Solving a problem: jlp()

A lp problem defined by problem function can be solved using jlp function:

jlp(problem->[,data->][z->][,sparse->][,tole->]

[,trans->][,subtrans->][,subfilter->][,subreject->]

[,class->][,area->][,notareavars->]

[,print->][report->]

[,maxiter->][,test->][,debug->])

options:

problem problem definition generated by problem function

data: data sets describing the stand (management unit) data or the schedules data.

The data sets must be linked to schedule data either using sub-options in the data

function or using linkdata function. The jlp function tries if it can find a subdata for

the data set given. If it finds, it will assume that the data set is the unitdata. If subdta is

not fiound, it tries to fing the upper level data. If it finds it, then it assumes that the

data set given is the schedules data. If data is not given, then the problem describes

an ordinary lp-problem, and all variables are z-variables. If data-option is given but no

variable found in problem is in the schedules data set, then an error occurs.

z If the data option is given then the default is that there are no z-variables in the

problem. The existence of z-variables must be indicated with z option (later the user

can specify exactly what are the z variables, but now it is not possible). The reason for

having this option is that the most jlp-problems do not have z variables, and variables

which J interprets as z-variables are just accidentally missing from the data sets.

***Currently only one data set allowed

sparse sparse matrix routines are used, should be used in large problems with

many domains *** not tested properly

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

72

tole the default tolerances are multiplied with the value of the tole option (default

is thus one). Smaller tolerances means that smaller numerical differences are

interpreted as significant. If it is suspected that jlp has not found the optimum, use e.g.

tole->0.1 or tole->0.01.

trans defines a transformation set which is executed for each cdata

record after doing transformations permanently associated with the

cdata.

subtrans defines a transformation set which is executed for each

xdata record after doing transformations permanently associated with

the xdata.

subfilter logical or arithmetic statement (nonzero value indicating True)

describing which schedules will be included in the optimization. If all schedules are

rejected, an error occurs. Examples: filter->(.not.clearcut) , filter-

>(ncuts.ge.5),filter->harvest (which is equivalent to: filter-

>(harvest.ne.0)). If the subfilter statement cannot be defined nicely using one

statement, the procedure can be put into a transformation set which can be tehn

executed using value function.

subreject logical or arithmetic statement (nonzero value indicating True)

describing which schedules will not be included in the optimization. If subfilter is

given then test applied only for such schedules which pass the subfilter test. If the

subreject statement cannot be defined nicely using one statement, the procedure can

be put into a transformation set which can be then executed using value function.

class class->(c_var, cval) Only those treatment units where the variable cvar gets –

value cval are accepted into the optimization. The units within the same class must be

consecutive.

area gives the variable in cdata which tells for each stand the area of the stand. It is

then assumed that all variables of cdata or xdata used in the problem rows are

expressed as per are values. In optimization the proper values of variables are

obtained by multiplying area and per area values. Variables of cdata used in domain

definitions are used as they are, i.e. without multiplying with area. Variables which

are not treated as per area values are given with the notareavars option.

notareavars If area-> option is given then this option gives

variables which will not be multiplied with area.

print of output printed, 1 => summary of optimization steps, 2=> also

the problem rows are printed, 3=> also the values of x-variables are printed.

report the standard written output is written into the file given in report option

 (.e.g. report->'result.txt'. The file remain open and can we written by several jlp-

functions or by additional write functions. Use close function to close it explicitly if

you want to open it with other program.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

73

maxiter maximum number of rounds through all units (default 10000).

test If option is present then jlp is checking the consistency of the intermediate

results after each pivot step of the algorithm. Takes time but helps in debugging.

debug determines after which pivot steps jlp starts and stops to print debugging

information to fort.16 file. If no value given, the debugging starts immediately

(produces much output, so it may be good to use step number which is close to the

step where problems started (print variable Pivots at the error return). debug-

>(ip1,ip2,ip3) indicates that debugging is put on at pivot step ip1, off at pivot ip2 and

the again on at pivot ip3.

jlp is generating output (amount is dependent on the print option) plus a JLP-

solution stored in special data structures which can be accessed with special J

functions described below. In addition jlp creates a list zvars%problem which stores

the variables among vars%problem which are interpreted to be z-variables. Note that

the z-variables get directly the optimal values, and they can be accessed directly

without any access functions. The variables receiving the status of the problem are:

Feasible logical variable (i.e. gets value 1 if problem is feasible, zero otherwise)

Optimal logical variable for indicating if the solution is optimal

Unbounded logical variable for indicating if the solution is unbounded

Started_jlp logical variable telling if jlp-function initialized data structures so that

inquiry functions can be used. Note that even if the problem is infeasible , these

inquiry functions return the current status of the problem solution. If the inquiry

functions are used when they cannot yet be used, an error conditions occurs.

Pivots number of pivot operations, can be used to set a good value for debug-

option in case of trouble.

Objective value of the objective function, for non-feasible problem -9.9, for

unbounded problem either 1.7e37 (for maximization) and -1.7e37 for minimization

Function jlp is using the algorithm of Lappi (1992) based on the generalized upper

bound technique of Dantzig and VanSlyke (1967). Function is using linear algebra

subroutines of Prof. R. Fletcher based on Fletcher (1996)

The logic of jlp-function is the same as in the old JLP software. There is one

difference which makes the life a little easier with J. In J the problem definition can

use c-variables which are defined in the stand data. These are used similarly as if they

would become from the x-data. It does not make any sense to have on a problem row

only c-variables, but there can be constraints like

vol#1-vol#0>0

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

74

where vol#0 is the initial volume, i.e. a c-variable, and vol#1 is the volume during

first period. In JLP these initial values had to be put into the x-data.

11.4 Inquiry functions for the JLP solution

The following J functions can access the most recent solution.

weights()

Gives the number of schedules which have nonzero weight in the solution.

Note. this is usually used in combination with unit, schedcum, schedw and weight

functions.

unit(i)

Returns the unit number for the i'th schedule having a nonzero weight,

argument: i is numeric value between 1 and weights()

schedcum(i)

Returns the cumulative schedule number (observation number in the subdata) for the

i'th schedule having a nonzero weight,

argument: i is numeric value between 1 and weights()

schedw(i)

Returns the within unit schedule number for the i'th schedule having a nonzero

weight.

argument: i is numeric value between 1 and weights()

weight(i)

Returns the weight (proportion) for the i'th schedule having a nonzero weight,

argument : i is numeric value between 1 and weights()

partweights()

Returns the number of schedules which have nonzero weight in the solution but so

that the whole unit is not assigned to the schedule. In a linear programming problem

there is usually only one schedule in each unit in the solution i.e. with a nonzero

weight. Binding constraints bring in the solution schedules with weight between zero

and one. The schedules can be access with part functions.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

75

Note. partweights() is usually used in combination with partunit,

partschedcum, partschedw and partweight functions.

*** currently partweights(unit) gives also the number of partweights in the unit,

but I'm not sure if I'll keep this

partunit(i)

Returns the unit number for the i'th schedule having weight between zero and one.

argument: i is numeric value between 1 and partweights()

partschedcum(i)

Returns the cumulative schedule number for the i'th schedule having weight between

zero and one

argument: i is numeric value between 1 and partweights()

partschedw(i)

Returns the within-unit schedule number for the i'th schedule having weight between

zero and one.

argument: i is numeric value between 1 and partweights()

partweight(i)

Returns the weight for the i'th schedule having le having weight between zero and

one.

argument: i is numeric value between 1 and partweights()

price%unit(iunit)

Returns the shadow price of the unit iunit.

argument: unit (stand) number

Note: if active rhs's are nonzero, then the prices of all units do not sum up to the value

of the objective function). see Lappi (1992).

weight%schedcum(sched)

Returns the weight of a schedule.

argument: cumulative schedule number

option:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

76

integer : the wight will be 1 for that schedule within the unit which has the largest

weight and zero otherwise

Note: weight(i) and partweight(i) return only nonzero values (precisely, weights

for basic schedules, which are nonzero except for degenerate basic schedules), but

weight%schedcum() return also zero weights

price%schedcum(sched)

Returns the shadow price of a schedule.

argument: cumulative schedule number

Note: for all schedules in the basis, the value of the schedule is the same as the value

of the unit given by price%unit(unit).

price%schedw(iunit,sched)

Returns the shadow price of a schedule within an unit

arguments:

iunit the number of the unit

sched the schedule number within the unit

weight%schedw(iunit,sched[,integer->])

purpose: numeric function returning the weight of a schedule within an unit

arguments:

iunit the number of the unit

sched the schedule number within the unit

option:

integer : the wight will be 1 for that schedule within the unit which has the largest

weight and zero otherwise

integerschedw(iunit)

purpose: numeric function returning the the within-unit schedule number of the

schedule which has he largest weight within the unit

arguments:

iunit the number of the unit

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

77

integerschedcum(iunit)

purpose: numeric function returning the cumulative schedule number of the schedule

which has he largest weight within the unit

arguments:

iunit the number of the unit

12 Simulator
12.1 Defining a simulator

J includes a simulator language as a slight extension of the ordinary transformations.

Using simulator language in the simulator function, one can define a simulator.

Simulations are done using simulate function which links a simulator and data sets.

Optimal (or reasonable) treatment schedules can then be selected using JLP-functions.

The structure of the simulator function is:

12.1.1 Simulator definition: simulator()

=simulator(periods->[,period->][,keepperiod->]

[,treevars->])

(simulator definition)
/

output: a simulator
options:

periods number of simulation periods

period variable indicating the period during simulation, default T

keepperiod each node up to period keepperiod-1 must have at least

one next function, default is the total number of periods. This

option is not transmitted to simulate which has keepperiod which

shows hoe many periods are actually simulated, but there is need for

this option only if keepperiod is used in simulation and the

simulator defines branches which do not reach all periods.

treevars gives the tree variables used in the simulation They can be used in the

simulator if they were vectors. The simulate function will actually make these

vectors for the simulation time. The loadtrees function will put the values of those

tree variables which are in the tree data set linked to the stand data

The first part of the simulator paragraph is an initialization part, then there are

definitions of nodes in any order, and definitions of sub module sections in any order.

Branching structure is defined using next and branch. Next function tells which

nodes are entered in the next period, branch will add nodes to the current period. The

structure of the simulator can be best understood best by a simple example.

nper=5

js=simulator(periods->nper,period->P)

next(grow)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

78

if(age#0.ge.50)next(thin)

if(age#0.gt.70)next(clear)

;do(t,1,nper)

;trace(age#"t",vol#"t",out->outvars#"t")

grow::t ! node header consist of generic node name and

the period

! number

age#"t"=age#"t-1"+10

vol#"t"=vol#"t-1"+25

jump('gr#"t"')

write($,'w',12,'grow/period',5,P,6,'age=',8,age#"t",5,'vo

l=',8,vol#"t")

next(grow)

if(age#"t".ge.50)next(thin)

if(age#"t".eq.50)branch(thin2)

if(age#"t".ge.70)next(clear)

!test that all output variables got values

tracetest(outvars#"t")

thin::t

age#"t"=age#"t-1"+10

vol#"t"=0.6*vol#"t-1"

write($,'w',12,'thin/period',5,P,6,'age=',8,age#"t",5,'vo

l=',8,vol#"t")

next(grow)

thin2::t

age#"t"=age#"t-1"+10

vol#"t"=0.6*vol#"t-1"

write($,'w',12,'thin2/period',5,P,6,'age=',8,age#"t",5,'v

ol=',8,vol#"t")

next(grow)

tracetest(outvars#"t")

clear::t

age#"t"=0

vol#"t"=0

write($,'w',12,'clear/period

',5,P,6,'age=',8,age#"t",5,'vol=',8,vol#"t")

next(grow)

tracetest(outvars#"t")

sub

gr#"t":write($,'t',1,'kukuu"t"')

back

endsub

;enddo

/

The nodes are identified both by the generic node (treatment) name and the period.

The nodes can be defined in any order, e.g. one can define first all growth nodes and

the all thin nodes. It is not necessary to define all nodes for all periods, e.g. for initial

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

79

periods there can be more treatment options. If there is a fixed number of treatment

programs defining all the thinning times, then it may be useful not to define generic

thinning nodes but thinning_at_age_80_in_program_1 type of nodes.

The next function tells that the argument nodes will be entered for the next period.

The next function can have several arguments and it can be in any place in the node

section. The whole node section is always computed before going to next period. The

next and branch function accumulate the branching nodes during the execution time.

Note: When adding nodes with next it is not tested if the nodes are already present (if

this will cause difficulties in practice I may add such testing, possibly conditional on

some test option)

Note 2. The branch function serves similar purpose as next function. The difference

is that next function adds nodes to the next period but branch is adding nodes to the

current period. It is tested if the nodes are already in the node list.

The sub sections contain start address...back subsections to which one can jump

from any node. If there are period dependent computation in these 'subroutines', then

also the starting addresses must be period specific.

There is no default action with respect to the period variable. It may be useful not to

use period variable e.g. in the input programming ;do loops as the index (t in the

above example) in order not to confuse the period in the simulator definition and in

the simulations.

Note 3. The simulator function checks during the simulator generation that all

argument nodes of next-functions are defined. It also checks that there are next

functions so that at least the keepperiod level can be reached. If next functions are

dependent on logical conditions it may happen that during the simulation the

keepperiod level is not reached. An error results in this case only if there is no

branches reaching the keepperiod level.

Note 4. The above example show how ;trace and tracetest can be used to check that

all output variables get values at each node for each period. After testing the simulator

properly, these can be commented out.

12.1.2 Special functions used in a simulator

next(node1,…,nodem)

Adds nodes to the list of children nodes of the current node.

see the simulator function above

branch(node1,…,nodem)

Adds nodes to the list of sister nodes of the current node.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

80

see the simulator function above

It is first tested if the nodes are already in the list of sister nodes because the next

command can have put the nodes into the list during the previous period at the mother

node.

cut()

Removes all children nodes generated by previous next function calls (a regret

function for next)

***The logic of J simulator is different than in the Jakta simulator. In Jakta there is

for each node a condition statement describing when the node is entered. In the J

simulator there is within the current period description what nodes are entered next or

what sister nodes to make. J simulators are more efficient than Jakta simulators, and it

is also easier to describe simulators which just contain some fixed predefined

schedules (e.g. thin at age 70 and age 80 clear cut at age 90).

***Jakta simulator contains the possibility to simulate growth at plot and tree level.

Plot level will be later available also in J.

loadtrees()

Loads initial state tree variables into the tree vectors. What variables are loaded is

determined within the simulate function. During the initialization phase of the

simulate function it is checked which variables are both in the treevars option of the

simulator and in the tree data set linked to the stand data, and the values are put into

the initial positions of the tree variable vectors.

Example:

Assume that d#0 gives the initial diameter, and there are initially ntrees#0 trees in a

stand. The one can defined diameters for next periods e.g.
loadtrees()

;do(t,1,nper)

growth::t

ntrees#"t"= ntrees#"t-1" ! one can kill or make new trees so number may

change

do(tree,1,ntrees#"t")

d#"t"(tree)=1.04*d#"t-1"(tree)

enddo

…;enddo

Note. It is possible to do tree level simulations without loadtrees() and tree data

set: one can generate trees from the stand variables.

12.2 Using a simulator: simulate ()

simulate(simulator1[…,simulatorn][,data->][selector-

>][,keep->][,keepperiod->]

[,obs->][,obsw->][,unitdata->][,unitdataobs->][,nobsw->])

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

81

Simulate schedules

output: data set storing stimulated schedules

arguments: one or more simulator objects

options:

data data set for stand data , if no data then the simulation is done using the values

of variables as they are during the computation (in this case no output data set is

generated (the simulator can of course e.g. write output files). If the simulator is using

such tree variables (given in treevars option) which come form tree data, then these

must be in the subdata linked to the data set.

selector If there are several simulator argument, there must be selector option

which determines which simulator is selected for the current stand. The selector

option has one or two arguments. The first argument gives the tranforamtion set

which determines which simulator is selected. The second argument, if present, gives

the name of list object which tells which simulator is selected. The default is Selected.

See an example below.

keep The variables stored in the schedules data (output). If keep-variables are not

given, then the output variables of the simulator are stored. Note: variables with

names starting with '$' are not counted as output variables. Note 2. If there is no

output, option is ignored.

keepperriod Each node in the simulated tree at the keepperiod level determines a

schedule. The whole subtree below the node is visited before generating the schedule.

The default for keepperiod is the value of the periods option of the simulator.

obs if output): the schedule data variable indicating the cumulative schedule

number in the schedule data (output). Default is 'Sched'.

obsw the schedule data variable indicating the schedule number within the current

unit. Default [name of the obs-variable]//'%'/[name of the obs variable of the data set]

unitdata the data set containing all variables in the input data plus the nobsw

variable (cdata of old JLP). The output schedule data is linked to the unitdata set so

that thereafter unitdata data set can be used as the input data for the optimization

(jlp function). The default is 'unitdata%'//[the name of the output-variable]

unitdataobs the variable in the unitdata indicating the observation number.

Default is 'Unit'.

nobsw the variable in the unitdata indicating the number of schedules in each unit

(used to link output to unitdata). Default Nsched

maxtrees maximum number of trees in one stand, default 100.. This option has

meaning only if there was treeevars option in the simulator definition.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

82

buffersize Schedules are temporarily stored in linked buffers. Buffersize option

gives the number of schedules in one buffer. It may be useful to experiment different

values in large simulations. Default is 10000.

Note: output will linked to unitdata in the same way as subdata to data in data-

function or in linkdata function.

E.g. the simulator js defined above can be used as follows:

age#0=40

vol#0=50

simulate(js)

kukuu1

grow/period 1 age= 50 vol= 75

kukuu2

grow/period 2 age= 60 vol= 100

kukuu3

grow/period 3 age= 70 vol= 125

kukuu4

grow/period 4 age= 80 vol= 150

kukuu5

grow/period 5 age= 90 vol= 175

thin/period 5 age= 90 vol= 90

clear/period 5 age= 0 vol= 0

thin/period 4 age= 80 vol= 75

kukuu5

grow/period 5 age= 90 vol= 100

clear/period 4 age= 0 vol= 0

kukuu5

grow/period 5 age= 10 vol= 25

thin/period 3 age= 70 vol= 60

kukuu4

grow/period 4 age= 80 vol= 85

kukuu5

grow/period 5 age= 90 vol= 110

thin/period 5 age= 90 vol= 51

clear/period 5 age= 0 vol= 0

thin/period 2 age= 60 vol= 45

kukuu3

grow/period 3 age= 70 vol= 70

kukuu4

grow/period 4 age= 80 vol= 95

kukuu5

grow/period 5 age= 90 vol= 120

thin/period 5 age= 90 vol= 57

clear/period 5 age= 0 vol= 0

thin/period 4 age= 80 vol= 42

kukuu5

grow/period 5 age= 90 vol= 67

clear/period 4 age= 0 vol= 0

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

83

kukuu5

grow/period 5 age= 10 vol= 25

Example of using the simulator with data:

dat=data(read->(age#0,vol#0),in->)

10,5

45,50

10,5

/

simdata=simulate(js,data->dat,unitdata->cdat)

Example of using the selector option (this also demonstrates a use of object list as a

pointer).

select=trans()

if(standtype.eq.1)then

Selected=list(js)

else

Selected=list(js2)

endif

/

simsdata=simulate(js,js2,data->data,selector->select,unitdata->cdat)

13 Plotting figures

There is clearly a need to make graphs within J. On the other hand, it is not

reasonably to try to include professional level graphs routines in a program like J. The

purpose is to make J as efficient as possible in solving large lp-problems. Graphic

windows take much memory, and it is complicated to use a large text I/O window in

the same program which is using graphic windows. Some simple graphics has been

organized in J as follows. The graph functions of J produce figure objects, which are

automatically, or with special show function written into temporary working file

jfig.jfig. There is an accompanying program jfig which waits for the appearance

of jfig.jfig. When the file is ready, it reads it and plots the figure. One can then

copy the figure as a bitmap into e.g. Word. When the user will click with the mouse

on the figure, jfig will delete jfig.jfig. When J has written file jfig.jfig, it

continues execution. But if J is asked to make a new figure and file jfig.jfig exists,

then J is waiting the disappearance of jfig.jfig (i.e. clicking on the figure window)

before it writes a new jfig-file.

Publication level graphics can be created using free R software. Using r-> option in

graphic functions the figure is written into a text file which can be loaded into R using

source("file") command. The file can be edited to get proper legends etc. The R figure

can be saved as a postscript file.

The first graphics J functions are:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

84

Scatterplot: plotyx()

plotyx(yvar,xvar[,data->][,mark->][,xrange->][,dx-]

[yrange->][,dy->][,append->][,show->])

Makes a scatter plot figure with the help of jfig program.

output: a figure object, default Figure

arguments: y-variable and x-variable

options:

data data sets

mark character used to plot observations, default '+'

xrange-> (xmin,xmaxx) , minimum and maximum of the x-axes , and the distance

between major ticks, default, the observed minimum and maximum of x-values, and

for dx the default is 10% of the x-range. It is possible to give only xmin or only xmin

and xmax.

dx-> the distance between major ticks, the default is 10% of the x-range.

yrange (ymin,ymax) , similar as xrange

append the figure is appended to the output figure object

show , show->0 indicates that the figure is not shown (can be shown later after adding

more sufigures)

Drawing a function: draw()

draw(func->[,x->][, xrange->][,dx->]

[,yrange->][,dy->][,y->]

[points->] [,append->][,style->][,width->]

[,color->][,mark->][,show->][,r->])

Draws a curve into a figure object shown with the help of jfig- program

output: a figure object, default: Figure

options:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

85

func-> describes the function to be drawn, e.g. func->(sin(x)), transformations

objects can be utlized through value function, e.g. func->(value(ss,y)) where ss

is transformation object and y variable getting value in ss.

If y is functions of x:

xrange-> (xmin,xmax[,xmin2,xmax2]) , minimum and maximum of the x-axes ,

and the distance between major ticks, for dx the default is 10% of the x-range. If

xmin2 and xmax2 are given, the function is drawn within this range not for the

complete range of x axes.

dx-> the distance between major ticks, for dx the default is 10% of the x-range

x-> variable which defines the x-axes for the curve.

If x is function of y :

yrange-> (ymin,ymax[,ymin2,ymax2]) , minimum and maximum of the y-axes. If

ymin2 and ymax2 are given, the function is drawn within this range not for the

complete range of y axes.

dy-> the distance between major ticks, for dy the default is 10% of the y-range.

y-> variable which defines the y-axes for the curve

points-> number of points generated, linear interpolation between the points, default

100 if dx or dy is not given, 10 points in each dx or dy section.

append-> the figure is appended to the output figure object

style->, style of the line, 0=no line, 1= is solid line, 2 dashed line , 3 dotted line, 4

dashdot line, these values work also with r-> option.

width-> width of the line, default is 1, has effect only in the R-version of the figure

color-> 1=black, 2=red, 3=green,4=blue,5=turquoise,6=purple,7 (or greater)=yellow

(the same colors apply when transporting to R)

mark-> mark put to some points on the line

show , show->0 indicates that the figure is not shown (can be shown later after adding

more subfigures)

r-> with no argument this implies that the figure is written to file 'jfig.r' which can be

loaded into R using function call:source("jfig.r"), if the argument is given, then it

defines the file name.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

86

Note. The other line types except the solid line do not show up properly when the

figure is shown with Jfig program if the number of points is large (i.e. line segments

are short). With R these are displayd properly.

Drawing line through points: drawline()

drawline(x1[,…,xn][,y1][,…,yn] [,append->][,style->]

[,width->][,color->][,mark->][position->]

[r->][,show->])

Draws a polygon connecting points (x1,y1), (x2,y2) etc into a figure object shown

with the help of jfig program. If only one point is given, then text given in mark –

option is placed at that point.

output: a figure object, default: Figure

arguments: The x and y coordinates of the points. If there is only one argument which

is a matrix object having two rows, tehn the first row is assumed to give the x values

and the second row the y values. If there are two matrix (vector) arguments, then the

first matrix gives the x-values and the second matrix gives the y-values.

options:

style->, style of the line, 0=no line, 1= is solid line, 2 dashed line , 3 dotted line, 4

dashdot line

width-> width of the line, default is 1, has effect only in the R-version of the figure

color-> 0=black, 1=red, 2=green,3=blue,4=purple

mark-> mark put to the corner points on the line. If only one point given, then text to

be placed at the point in position indicated by the position option.

position-> if only one point given, then the option indicated how the text given in

mark is placed with respect to the point. The interoperation is:

0 (default), text is centered

1, text is below

2 text is left

3 text is up

4 text is right

r-> with no argument this implies that the figure is written to file 'jfig.r' which can be

loaded into R using function call:source("jfig.r"), if the argument is given, then it

defines the file name.

show , show->0 indicates that the figure is not shown (can be shown later after adding

more subfigures)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

87

Note: if style->0 and there is mark-> then only the points are shown.

Note 2: If you like to have symbolic names for colors and styles you can define these

nicely by putting definitions into the start up file j.par.

Note 3. The position codes are the same as in R, and the output of text tries to imitate

the R output so that one could put legends on the graph already in J and use R just to

draw final figures.

Drawing class information: drawclass()

drawclass(matrix,x->,xrange->[,sd->][,se->][,dx][,append-

>][,style->]

[,color->][,mark->][r->][,show->])

Plots class information produced by classify function (class means standard

deviations, standard errors)

show(fig[,r->][,xrange->][,yrange->][color->])

Shows a previously made figure

argument : a figure object to be written into filer jfig.jfig so that the program Jfig cam

then show the figure.

options:

xrange->(xmin,xmax) defines a new x-range for the figure. If xmin=xmax=0, then the

minimum and maximum x-coordinates used in any subfigure are used. The new range

will become property of the figure object.

sd draw +- class standard deviation around class mean

se draw +- class standard error (sd/sqrt(n)) around class mean

yrange->(ymin,ymax) defines a new y-range for the figure. If ymin=ymax=0, then the

minimum and maximum y-coordinates used in any subfigure are used. The new range

will become property of the figure object.

r-> with no argument this implies that the figure is written to file 'jfig.r' which can be

loaded into R using function call:source("jfig.r"), if the argument is given, then it

defines the file name.

color-> gives the color code for the whole figure which will bypass any color codes

given in subfigures. If no argument is givne, the drawing is done in black. This is

useful if we want to see figures in colors then we must turn everything into black and

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

88

white when producing figures for publications. The color codes used in the

subfigures will remain unchanged.

***Currently only one argument allowed, later several figures can be overlaid.

14. Stem curves, splines and volume functions

J will contain many tools for handling stem curves. Currently there are the following

functions available.

13.1 Stem splines

=stemspline(h1,…,hn,d1,…,dn[,sort->] [print->])

output: an interpolating cubic spline, designed specially for stem curves by Carl

Snellman. To prevent oscillation (which can happen with splines) two knots are

merged if the distance between heights is less than 8cm (this can be made an option if

needed). The resulting spline is tested to see if it oscillates. For each knot interval, the

value of the spline is computed at 1/3 and 2/3 point of the knot interval. If the larger

of these predicted diameters is larger than 0.4 cm + largest of the endpoint diameters,

a new knot is added with the diameter value equal to 0.7*the larger endpoint

diameter+0.3*the smaller endpoint diameter. If the smaller of the tested diameters is

smaller than the smaller endpoint diameter-0.4 cm or it is smaller than 0.4 cm a new

knot is added with diameter value 0.7*the smaller endpoint diameter+0.3*the larger

end point diameter.

arguments: h1,…,hn, the heights of measured diameters (in m), d1,…,dn, the

diameters (cm).

options:

sort the default is that the heights are increasing, if not then sort option must be

given

print If print option gets value 2 then only the problem cases are printed, if less than

2, then nothing is printed (unless an error occurs)., with value 3 or greater the knot

points are printed.

The resulting spline can be utilized using value function, integrate function or

stempolar function.

stempolar(stemspline,angle[,origo->][,err->])

Compute the diameter at polar coordinate angle (in degrees) using a stemspline object.

options:

origo_> gives the baseline when computing the angle, default is 0

err-> if the is error in obtaining the polar coordinate diameter, then err option defines

transformation set which is called before returning from stempolar function.

laasvol(species,dbh [,d6][,h])

Volume functions of Laasasenaho (1982).

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

89

species: 1 =Scots pine, 2= Norway spruce, 3 and 4 = birch, 9=larch (not available

when dbh is the only measured dimension)

dbh and d6 (diameter at 6m) are in cm, height (h) is in m and result is in litres.

=laaspoly(species,dbh [,d6],h)

Polynomial stem curve of Laasasenaho (1982).

species: 1 =Scots pine, 2= Norway spruce, 3 = birch, 5=aspen, 6=alder, and 9=larch

(not available when dbh is the only measured dimension)

dbh and d6 (diameter at 6m) are in cm, height (h) is in m

The curve can then be used using value function, e.g.

curve=laaspoly(species,dbh,h)

d6=value(curve,6) ! diameter at 6 m.

Functions providing volume integrals of the curves and height of given diameter will

be added on the request.

=tautspline(x1,…,xn,y1,…,yn [,par->][,sort->]

[print->])

output: an interpolating cubic spline, which is more robust than an ordinary cubic

spline.. To prevent oscillation (which can happen with splines) the function adds

automatically additional knots where needed.

arguments: x1,…,xn, the x values, d1,…,dn, the y values. There must be at least 3

knot point, i.e. 6 arguments.

options:

par-> gives the parameter determining the smoothness of the curve. The default is

zero, wchich produces orninary cubic spline. A typical value may 2.5. Larger values

means that the spline is more closely linear between knot points.

sort the default is that the x’s are increasing, if not then sort option must be given

print if print option is given, the knot points are printed (after possible sorting).

The resulting spline can be utilized using value

The taut spline algorithm is taken from: de Boor, C 1978. A practical guide to splines.

Applied mathematical sciences. Vol. 27. Springer-Verlag, New York, 392 p.

14 Utility functions
14.1 Working directory

The current working directory can be seen or changed.

showdir()

Prints the current working directory

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

90

setdir(charval)

Sets the current working directory. The argument is a character variable or character

constant.

14.2 Timing functions

There are two timing functions which can be used to measure the computation time.

There are two versions of each, without argument, and with an argument

secnds()

purpose: first call gives the elapsed time since midnight in seconds

secnds(t)

purpose: gives the elapsed time since midnight -t.

cpu()

purpose: first call gives the cpu time since starting the program in seconds

cpu(t)

purpose: gives the total cpu time -t

14.3 List functions.

=list(obj1,…,objn[,mask->])

Defines an object list

output: a list object

arguments: 0-n objects (need not exist before)

options:

mask defines which objects are picked from the argument list, value 0 indicates that

the object is dropped, positive value indicates how many variables are taken, negative

value how many object are dropped (thus 0 is equivalent to -1). mask option is useful

for creating sublists of long lists.

Note 1. If an argument does not exist beforehand, it is first created as a real variable.

Note 2: The same object may appear several times in the list. (see merge)

Note 3. There may be zero arguments, which result in an empty list (see example

below)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

91

Examples:

all=list() ! empty list

sub=list()

;do(i,1,nper

period#"i"=list(ba#"i",vol#"i",age#"i",harv#"i")

sub#"i"=list(@period#"i",mask->(-2,1,-1))

all=list(@all,@period#"i") !note that all is on both sides

sub=list(@sub,@sub#"i")

;end do

=merge(obj1,…,objn)

Defines a list dropping multiple references to the same object

arguments: objects or lists

If an argument is a list, then it is not necessary to expand it using @-operator, even if

it can be expanded and the result is the same.

Note: arguments of merge need to be known beforehand (unlike in list function).

=difference(list1,list2)

Defines a list dropping from list list1 all objects found in list list2

arguments: lists

index(object,list[,any->])

Gets the index of a variable in a list, usually in the keep list of a data set (the column

number in the data matrix)

arguments:

object object name

list : a list object

options:

any: accept also that variable is not in list (output=0) without error condition

Note 1: if the second variable is not a list, error occurs. If the variable is not in the list,

index gets value 0.A error condition is obtained if any option is not present

Note 2. It is faster to get the value of the index within input programming or outside

the transformation set so that it must not be searched repeatedly.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

92

Note 3. See Inquiry functions for data object for an example how to utilize index

function.

len(list[,any->])

Returns the number of elements in the list

argument: a list object

option

any-> len returns value-1 if argument is not legal object for len (without any-> an

error occurs)

Note: len works also for text objects, returning the number of characters in a text

object, and for a matrix it returns the number of elements in the matrix.

Note: The value of a specific list element variable can be obtained using value

function

14.4 Getting value from an object: value(object,xvalue)

If a J function generates an object containing parameters for a special function then

the value function can used to generate values from the object. The general form of

the value function is

value(object,xvalue [options])

where xvalue is the value used as the argument for the object which can be used as a

function. For most cases the object can be used also otherwise. The output is a single

numeric value.

If the first argument is a list and there is option index-> then the object is picked from

the list.

There are the following special cases.

14.4.1 Interpolating a regular matrix: value(matrix,x)

value(matrix,xvalue[,row->])

Interpolates linearly rows of matrices.

arguments:

matrix a matrix

xvalue value for which a row must be interpolated

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

93

options:

row Gives the y-row for interpolation if there are more than two rows in the matrix

and only one row needs to be interpolated.

#The first row of the matrix defines the knot points. It is assumed that knot points are in increasing

order. If there are only two rows in the matrix, then the second row defines the values at the knot

points. If there are more than two rows then a vector is generated by interpolating each row from 2 to

nrows(matrix), unless there is row option

Note: Also extrapolation is allowed, i.e. the argument can be smaller than the first

knot point or larger than the last knot point.

Example:
sit>a=matrix(3,4,in->)

10, 20, 30, 40

15, 16, 18, 20

20, 40, 60, 80

/

sit>v=value(a,35)

sit>print(v)

 v is matrix(2 , 1)

 19.00000

 70.00000

sit>c=value(a,15,row->2)

sit>print(c)

c= 15.50000

*** Later quadratic and cubic interpolation, as well of interpolating two dimensional

matrices will be available.

14.4.2 Interpolating a classify-matrix: value(cl_matrix,xvalue)

value(cl_matrix,xvalue)

Interpolating a matrix produced by classify function.

output: a real variable

arguments:

cl_matrix a matrix produced by classify function

xvalue value of the x variable used for computing class means.

14.4.3 Using a spline: value(spline,xvalue)

value(spline,xvalue)

Gets values from a smoothing spline or a stem curve spline

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

94

arguments:

spline a spline generated by smooth or stemspline function

xvalue argument of the spline.

**later other types of splines will be available

14.4.4 Getting values from a transformation set:
value(tr_set,xvalue)

value(tr_set,xalue[,arg->][,result->])

arguments:

tr_set a transformation set generated by trans function

xvalue argument which is put into the argument variable (default

Arg)of the transformation set

options

arg variable used as the argument variable, it bypasses the argument variable

associated with the transformation set

result , defines the variable whose value is the result of the function, default is the

result variable associated with the transformation set (and default for that variable is

Result)

Note The original value of the argument variable is remains unchanged.

Example:
s=trans(input->,arg->x,result->h)

h=sin(x+z+1)

/

Then y=value(s,3) is equivalent to

xold=x

x=3
call(s)

y=h

x=xold

This form of the value function is useful e.g. in filter, reject or func options or when

transformations are needed to get numeric values into options.

Note 2. A transformation set can be used also as a function using result function, if

the transformation set does not use a argument whose value need to bypassed

simultaneously.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

95

14.4.5 Gettting value of a list variable

value(list,index)

arguments:

list a variable list generated by list function

index index of the variable

Example:

alist=list(a,b,c)

b=6.7

Then value(alist,2) returns 6.7

*** Later there will be more function objects accessed using value function

14.5 Inverse function: valuex(object,yvalue)

An inverse function gives the value of the x-variable for which the function obtains a

give value. Currently the only inverse function implemented is:

14.5.1 Height of diameter using stemspline:
valuex(stempline,diameter)

valuex(stemspline,diameter)

height (in m) of a given diameter

arguments:

stemspline stemspline object generated with stemspline or stemspinej

diameter dieameter (in cm) for which the height is obtinaed

14.6 Interpolating points: interpolate()

interpolate(x0,x1[,x2],y0,y1[,y2],x]

If argument x2 and y2 are given then computes the value of the quadratic function at

value x going through the three points, otherwise computes the value of the linear

function at value x going through the two points.

arguments: numeric values

Note. The argument x need not be within the interval of given x values (thus the

function also extrapolates).

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

96

14.7 Integrating a function

*** Later there will be several for of integrate function. Currently the only one is:

14.7.1 Integrating stem curve to get stem volumes

integrate(stem_spline,h1,h2)

output: volume (dm
3
) of stem segment

arguments:

stem_spline a stem spine generated with stemspline function

h1 lower limit of the stem segment, in metres

h2 upper limit of the segment, in metres

Note 1: The upper limit must be smaller or equal to the to the last height argument

given in stemspline.

Note 2. This form of the integrate function does not integrate the value of the stem

curve but actually value(stem_spline,h)
2
 and the result is then divided by

10000 to get the result in dm
3

(in stem splines both height and diameter are in cm)

14.8 Bit functions

In some applications we may need several indicator variables to indicate if some

property is present. In large data sets would be waste of space to store a separate

variable for each indicator. J has special bit functions for packing several indicators in

the same variable. One variable can store 32 indicators, and it is also possible to store

more indicators using variable lists. When bits are stored into variables, then these

variables can be included in data sets. There is also a special bit matrix object which is

created with bitmatrix function. The bit patterns can be read from files, or set by

setvalue function. Bits in a bit matrix can be obtained with value function and the

matrix can be printed with print function.. There are following bit functions available.

setbits(ind, bit1,…,bitn)

Sets one or more bits on.

arguments:

ind a real variable or a list of real variables (do not expand by @))

Note: argument ind is used both as input and output

bit1,…,bitn bit positions to be put on

The bit positions of a real variable are numbered 1,…,32, the bit positions of a

variable list are numbered from 1 to 32*(number of variables in the list).

clearbits(ind,bit1,…,bitn)

Sets one or more bits off.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

97

arguments:

ind a real variable or a list of real variables (do not expand by @))

Note: argument ind is used both as input and output

bit1,…,bitn bit positions to be put off

The bit positions of a real variable are numbered 1,…,32, the bit positions of a

variable list are numbered from 1 to 32*(number of variables in the list).

Note: giving value zero to a real variable clears all bits.

getbit(ind,bit)

Gets the value of a bit position.

arguments:

ind: a real variable or a list of real variables (do not expand by @)

bit bit position to read

function: If the bit is on, then the value of the getbit function is 1 (True), otherwise

zero (False). the bit positions of a real variable are numbered 1,…,32, the bit positions

of a variable list are numbered from 1 to 32*(number of variables in the list).

Note: The getbit function can be directly used in logical statements, e.g.,
if(getbit(ind,8))then

=getbitch(ind[,from][,to])

Gets indicators into a text line, '1' indicating a bit which is on, and '0' a bit which is

off.

Output: text object

argument

ind a real variable or variable list

if there are no other arguments, then all 32 bit positions are put into the output, if there

is on additional argument, then this indicates the number of bits read, and if there are

two additional arguments the first indicates the starting position and the second

indicates the last position.

Example:
sit>a=0

sit>setbits(a,2,5,7)

sit>v=getbitch(a)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

98

sit>print(v)

 v is text object:

 01001010000000000000000000000000

sit>

=bitmatrix (nrows[,colmax][,in->] [colmin->][,func->])

Output: a bit matrix object.

arguments

nrows number of rows in the bit matrix, value -1 indicates that this

is indicated by the number of records in the file given in in->

option.

colmax upper limit of column index, default=1, value -1, indicates

that this is obtained from the column indices read from the file

given in in-> option.

options

in-> indicates that the bit pattern is read from the input paragraph

or from the file. If in-> option is not given then all bits are

initially zeros until changed with setvalue function.

colmin-> gives the lower limit of the column index

func-> when read the column indices, they can be trandformed first

using the function give in func option. The column index read from

the data is put into the default argument variable 'x#'.

Examples:

a=bitmatrix(3,4,in->)

2,1,4

0

1,1

/

The first number tells how many bits are set for the row, then there

are the column indices.

a=bitmatrix(3,4,in->,colmin->0) ! now 0 is legal column index

2,0,4

0

1,1

/

Note: If the matrix would be very sparse and large, then it is possible to use index

function to to pack the matrix and acces also the matrix. I give an example when this

packing is needed.

value(bitmatrixobj,row[,col][,->any])

The value of a bit in a bit matrix can be obtained using value function

output: real value 1 or 0

Arguments

bitmatrixobj an object created by bitmatrix function

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

99

row = row index

col = column index

option:

any-> if row or col is out of range (row<1 or row>nrows(bitmatrixobj), or

col<colmin, or col>colmax), the default is that an error condition occurs, but any->

option indicates that the value zero (False) is returned. This option is handy when

bitmatrix e.g. describes domains, then it is not necessary that each stand belongs to

some domain.

setvalue (bitmatrixobj,row[,col],value)

Sets bitmatrixobj(row,col)=value

All nozero values indicate that the bit is set into one.

nrows(bitmatrixobj)

returns the number of rows in a bitmatix

ncols(bitmatrixobj)

returns the number of column in a bitmatix

=closures(bitmatrixobj)

To get neighborhoods indicated by a bitmatrix

output: a bitmatrix

argument: A symmetric square (1:n,1:n) bitmatrix where ith row indicates all the

neighbors of ith point.

#All the neighbors of a given point are not necessarily neighbors if they are located at

opposite sides of a point. Closures function will generate all such neighborhoods

where all points are neighbors.

Example:

If points are located

1 2

3 4

5 6

Then this can be firstdescribed

ne=bitmatrix(6,6,in->)

4,1,2,3,4

4, 2,1,3,4

6 ,3,1,2,4,5,6

6, 4,1,2,3,5,6

4 ,5,3,4,6

4,6,3,4,5

/

Note that the 'focus' point is given as first in each line, but the neighbors can be in

any order. Then commands
ne2=closures(ne)

print(ne2)

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

100

will produce output

ne2 is 2 x (1 : 6) bitmatrix:

111100

001111

**The algorithm in closures is not well tested

14.9 Defining crossed variables: properties()

A data object is describing several subjects by defining for each subject a set of

variables associated with them. If there are a few named subjects then it may be useful

to have separate subject specific variables (constants) which define properties of the

subjects. These kinds of variables can be defined with properties function.
properties(var1,…,varn[,print->])

subject1, val1,…,valn

…

/

Defines subject specific constants.

Arguments: generic names of variables

Options: print : are the values printed (to check that they have been

read correctly)

Input paragraph following properties function has a line for each subject, where

first is the name of the subject, and then values for all argument variables. The

properties function then defines variables having fist the generic variable name, then

'%' and then the subject name.

Example:
properties(capacity,xkoor,ykoor)

rauma, 100, 64,78

pori, 30, 67,89

/

Defines variables capacity%rauma,xkoor%rauma,ykoor%rauma,capacity%pori,

etc.

14.10 Storing values of variables

=store(var1,…,varn)

Stores the values of variables.

Output: a storage object

Note: A variable list may be again nice when defining the arguments.

load(storage)

Loads back the values of variables.

argument: a storage object created by store.

*** Now only values of real variables can be stored. If there is need to store general

objects, it is quite easy to make store capable of handling these.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

101

14.11 Saving object into files

save(filename,obj1,…,objn)

arguments:

filename character variable or character constant, the name of the file

obj1,…,objn named objects

Note: There can be several save commands which all save into the same file, the file

remains open after each save command.

Note 2. The file can be closed by using close(filename)

*** Currently the only compound objects (i.e. objects having links to other objects,

e.g. data set or transformation set) which can be save are:

-list of real variables

-regression object

.

unsave(filename)

argument:

filename character variable or character constant, the name of the file created by

save().

Output will be the list of all objects loaded (default for the output is Result as usually)

Note: All objects saved in the file are loaded, i.e., without taking into account if they

are saved with one or more save functions. If an object to be unsaved already exist,

then it will be replaced. The number of replaced objects will be printed.

Note2: If unsave is tested using it in the same run as the save functions, the file must

be closed first with close function.

15 Error debugging and handling

15.1 Errors detected by J

If J detects an error then the following information is provided:

-J prints the current and previous input line as generated by the input programming.

-J will close all open include files and it tells how many lines it has read from these

files. Usually, but not always, the last line read has caused the error. E.g. ;do loops

are read first before starting to interpret lines within the loops. So if the error is within

the loop, then last line read is later than the error line.

If an error occurs when computing interpreted transformations within a transformation

set or a simulator, and saving of source code is not denied by. source->0 , then J also

prints the source code causing the error. The source code around the line can be seen

by using print function (possibly with row option) or by writing the whole source

code into a file using write function.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

102

*** In some cases J may print the next source line. Please tell about these cases.

After an error the control return to sit> level.

If the limit for the maximum number of named objects is encountered, then J stops.

See Set up of J how to proceed.

***J is in principle protected against trying to put data above the allocated dimension

limits, but there will certainly be problems in the first versions.

15.2 Tracing variables

It is possible, using special tracing functions, to track changes of variables, define

minimum and maximum values for variables, and test if all required variables get

values within any phase of a J run.

;trace(obj1,…,objn [,min->],[,max->][out->][,level->]

[errexit->])

Start generating tracing information for objects.

arguments: J objects (usually real variables)

options:

min-> gives lower bound for a variable. If a variable gets smaller value then the value

and the source line are written, and if errexit option is present then an error condition

occurs.

max-> gives upper bound for a variable. If a variable gets smaller value then the value

and the source line are written, and if errexit option is present then an error condition

occurs.

out-> gives a name for an trace set object which will be generated and which can be

used in tracetest function to test that all objects obj1,…,objn have got values in a

section of a J run.

level-> defines the level or tracking, possible values are

0 means that tracing code is generated but it is now deactivated, it can be activated

later with trace function.

1 indicates that the changes of objects are counted but not automatically written unless

ranges given in min or max option is violated.

2 indicates that all changes are written.

If min, max or out option is present then default is 1 otherwise 2.

errexit-> if value smaller than min or value greater than max occurs, then an error

occurs.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

103

Note. When an object is used as an argument of ;trace function, then each time when

the object is an output of any function or arithmetic statement, then the transformation

interpreter adds a call to tracing function. What exactly happens in this tracing

function is dependent on the current values of tracing parameters which are initially

set by ;trace function but which can be later modified, also within an transformation

set, using trace function.

;trace function creates following objects:

Tracevars = a cumulative object list of all objects used in all ;trace functions. Even if

generation of tracing code is stopped for an object, the object remains in the same

place in Tracevars list.

Tracestatus = row vector corresponding to Tracevars list indicating if tracing code is generated

(value 1) or not (value 0).

Tracelevel = row vector telling the current value of tracing level.

Tracecount = row vector showing counts of changes, used e.g. by tracetest function-

Traceminstatus= row vector indicating if minima are given

Tracemin = contains the given minimum values

Tracemaxtatus= row vector indicating if maxima are given

Tracemax = contains the given maximum values

Note. Current Tracevars list and current values of the trace parameter vectors can be

seen by printing. It is also possible to change the parameter values directly, but it is

recommended that ;traceoff and trace functions are used to change the values.

;traceoff(obj1,…,objn)

Stop generating tracing code for objects.

Note: The objects remain in the Tracevars list but the values in Tracestatus vector are

changed into zero.

trace(obj1,…,objn [,min->],[,max->][,level->]

[errexit->])

Change the tracing parameters for objects. The meaning of arguments and options is

like in ;trace function. The differences are:

1. Arguments of trace function must be previous arguments of ;trace function.

2. Trace set can be defined only in ;trace function (using out-> option)

3. trace function can be an function within a transformation set, but ;trace function is

just done directly and it will not reain part of the transformations set. With trace

function one can program dynamic tracing and debugging strategies.

tracetest(traceset)

Test that all objects in a trace set object have been changed since last call of the

tracetest function ort from the beginning. If not all objects have been changed, an

error occurs.

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

104

Argument: An trace set object generated by the out option of the ;trace function.

Note: tracetest function is useful mostly in two different cases:

1. if the values of some variables are determined in complicated control structures

which may contain 'holes', i.e. with some combinations of input variable values an

intended output variable does not get any value at all.

2. When defining a simulator it can very easily happen that all intended output

variables do not get values in all nodes. See simulator function how to utilize tracetest

function.

An example of tracing functions

Define a transformation set tr as follows:
tr=trans()
a=1
;trace(a,b) !start generating tacing code
a=7
b=2
;traceoff(a) !stop generating tracing code for a
a=4
b=3
/

Executing tr we get:
 call(tr)
 a got value 8.000000 in tr at line 2 :
 a=7+1
 b got value 5.000000 in tr at line 3 :
 b=2+3
 b got value 3.000000 in tr at line 5 :
 b=3
 trace(a,level->0) ! stop tracing a even if it
 call(tr)
 b got value 5.000000 in tr at line 3 :
 b=2+3
 b got value 3.000000 in tr at line 5 :
 b=3

We can drop tracing of a even if the tracing code remains in transforamtion set tr.

 trace(a,level->0) ! stop tracing a

 call(tr)

 b got value 5.000000 in tr at line 3 :

 b=2+3

 b got value 3.000000 in tr at line 5 :

 b=3

Start checking that b is at least 3.

trace(b,min->4,errexit->)

call(tr)

b got value 3.000000 in tr at line 5 :

b=3

err transformation set=tr, *source= source%tr

error on source row 5:

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

105

b=3

An example of using tracetest. Define first trace set outvars and transformation set tr2:

;trace(x1,x2,out->outvars) ! define trace set outvars
tr2=trans()
if(a.gt.2)then
x1=5
x2=4
elseif(a.lt.3)
x2=7
endif
/

Define a and execute transformations:
 a=7

 call(tr2) ! now both x1 and x2 get new values

 tracetest(outvars) ! nothing happens

But call then transformations using a=2:
 a=2

 call(tr2) ! now x1 is not updated

 tracetest(outvars) ! comment helps to find the place if error occurs

 *tracecount for x1 is zero

 err transformation set=$Cursor$

 **input line:tracetest(outvars) ! comment helps to find the place if

error occurs

 *closing inc-file 'trace.txt'

 after reading 34 lines from 34

See simulator for another example of tracetest.

15.3 J does not work correctly

Several functions have an debug-> option even if it is not described in the above

manual. With this option J writes extra information about how it proceeds. User may

try this option before consulting J. Lappi.

 Error messages starting with '*j*' indicate programming errors which should be

reported to the author.

If there is in transformations or at the command level function

debug()

then special debugging mode is entered. Debug information can be understood only

by the author. Debugging can be made conditional by having argument

debug(t.gt.0)

This is actually equivalent to

if(t.gt.0)debug()

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

106

Debugging is put off by

debug(0)

16 Acknowledgements

Function jlp is using linear algebra subroutines contained in quadratic programming

software Bqpd made by Prof. R. Fletcher, University of Dundee. Discussions with

Reetta Lempinen helped to fix the properties and the syntax of the software. She also

introduced me to the programming techniques of Fortran 90. Even Bergseng started to

use the linear programming modules on a premature stage and Even has detected a

large number of errors. Jarmo Saarikko and Olavi Kurttio made the web distribution

of the software. Jarmo Saarikko also cleaned up considerably the first version of this

manual.

17 References

Dantzig, G.B and VanSlyke, R.M. 1967. Generalized upper bounding techniques.

Journal of Computer and System Sciences. 1:213-226.

Lappi, J. 1992. JLP - A linear programming package for management planning.

Finnish Forest Research Institute Research papers. 414, 134 p.

R Development Core Team, 2004. R: A language and environment for statistical

computing. ISBN 3-900051-00-3. http://www.R-project.org

Fletcher, R. 1996. Dense factors of Sparse matrices. Dundee Numerical Analysis

Report NA/170

18 Index

In the following index J functions and statement are in lower case, other entries are in

the upper case..
;do() .. 28

;enddo ... 29

;goto .. 30

;if() .. 29

;incl() .. 28

;return ... 28

abs() .. 40

acos() .. 41

acosd() .. 41

acotan() ... 41

acotand() ... 41

Address in a transformation set 50

Address in input programming 26

asin() ... 41

asind() ... 41

ask() .. 54

askc() .. 55

atan() ... 41

atand() ... 41

back ... 50

Basic statistics ... 62

Binary format .. 51

Bit functions .. 96

bitmatrix() ... 97

branch() .. 79

Buffer .. 53

call() .. 37

ceiling() ... 41

Character constant ... 21

Character variable ... 21

classify() ... 64

clearbits() .. 96

close() .. 54

cos() .. 41

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

107

cosd() .. 41

cosh() .. 42

cot() .. 41

cotd() .. 41

cpu() ... 89

cut() .. 80

cycle ... 49

Data set ..55, 61

data() .. 55

data-> .. 35

debug().. 105

Degrees ... 41

delete() .. 20

difference() ... 91

Directory ... 89

do() .. 49

dot() .. 41

dotproduct() .. 46

draw() ..84, 87

drawline() ... 86

editdata() ... 58

elementsum() .. 46

enddo .. 49

err-> .. 36

errexit() ... 50

exist() .. 54

exitdo .. 49

exp() ... 40

Figures .. 83

File ...51, 54

format ... 51

getbit() .. 96

getbitch() .. 97

getobs() ... 61

goto() .. 50

if() ... 48

in-> ... 35

Index in list ... 91

index() .. 91

Input programming 26

int() ... 40

Integer ... 40

integerschedcum() .. 76

integerschedw() .. 76

integrate .. 88

inverse function .. 95

Inverse trigonometric functions 41

inverse() .. 45

j.par ..17, 86

jfig .. 83

jfig.jfig .. 83

JLP ...69, 73

jlp() .. 71

jump() ... 50

Key shortcuts .. 32

len(list).. 91

len(matrix) .. 47

Linear programming 69

linkdata() .. 58

List arithmetics ... 43

list() ... 90, 94

Lists ... 90

load() ... 100

loadtrees() ... 80

log() ... 40

log10() ... 40

Logical expressions 40

Logical values ... 22

Matrix .. 92, 93

Matrix computations 44

matrix() .. 44

max() ... 41

Merge lists ... 90

merge() .. 90

min() .. 41

ncols() ... 47

next() .. 79

nint() .. 40

nobs() .. 60

npv() .. 42

nrows() .. 47

Object names ... 19

Option ... 34, 35

partschedcum() .. 75

partschedw() .. 75

partunit() ... 74

partweight() ... 75

partweights() ... 74

plotyx() .. 83

price%schedcum() ... 75

price%schedw() ... 76

price%unit() .. 75

print() .. 51

problem()... 69

properties() ... 99

Radians .. 41

ran() ... 42

Random numbers .. 42

rann() ... 42

read() ... 51

regr() ... 65

Regression ... 65

Relational expressions 40

result() ... 38

return ... 49

save() ... 100, 102

Scatterplot ... 83

schedcum() .. 74

schedw() .. 74

secnds() ... 89

setbits() .. 96

setdir() ... 89

setmatrix() ... 45

setvalue() ... 98

Shortcuts ... 31

showdir() ... 89

simulate() ... 80

Simulator ... 77

simulator() ... 77

sin() ... 41

Finnish Forest Research Institute – Juha Lappi: J- users' Guide –V1.02. November 2010

108

sin(x) ... 84

sind() ... 41

sinh() ... 42

smooth .. 93

smooth().. 67

Smoothing spline .. 67

sort() ... 47

sqrt() ... 40

sqrt2() ... 40

stat ... 62, 63, 64

Statistical functions 62

stemspline .. 88, 93, 95

store() ... 100

submatrix() .. 46

t() 45

Tab .. 52

tan() .. 41

tand() .. 41

tanh() ... 42

;if() .. 29

Timing ... 89

trans() .. 93

Transformation set .. 22

Transpose .. 45

unit() .. 74

unsave() ... 101

value .. 88

value() ... 38, 92, 93, 98

values() .. 59

valuex() ... 95

weight%schedcum() 75

weight%schedw() .. 76

weight() ... 74

weights() ... 73

which() .. 41

write() .. 52

